Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts

Mi Gyoung Lee, Kyoungsuk Jin, Ki Chang Kwon, Woonbae Sohn, Hoonkee Park, Kyoung Soon Choi, Yoo Kyung Go, Hongmin Seo, Jung Sug Hong, Ki Tae Nam, Ho Won Jang

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

The band edge positions of semiconductors determine functionality in solar water splitting. While ligand exchange is known to enable modification of the band structure, its crucial role in water splitting efficiency is not yet fully understood. Here, ligand-engineered manganese oxide cocatalyst nanoparticles (MnO NPs) on bismuth vanadate (BiVO4) anodes are first demonstrated, and a remarkably enhanced photocurrent density of 6.25 mA cm−2 is achieved. It is close to 85% of the theoretical photocurrent density (≈7.5 mA cm−2) of BiVO4. Improved photoactivity is closely related to the substantial shifts in band edge energies that originate from both the induced dipole at the ligand/MnO interface and the intrinsic dipole of the ligand. Combined spectroscopic analysis and electrochemical study reveal the clear relationship between the surface modification and the band edge positions for water oxidation. The proposed concept has considerable potential to explore new, efficient solar water splitting systems.

Original languageEnglish
Article number1800727
JournalAdvanced Science
Volume5
Issue number10
DOIs
Publication statusPublished - 2018 Oct
Externally publishedYes

Keywords

  • band structure
  • ligand engineering
  • MnO
  • oxygen evolution catalysts
  • water splitting

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts'. Together they form a unique fingerprint.

Cite this