Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt

Sang Eun Bae, Tae Sub Jung, Young Hwan Cho, Jong Yun Kim, Kyungwon Kwak, Tae Hong Park

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm2+ and Sm3+ were electrochemically measured to be 0.92 × 10-5 and 1.10 × 10-5 cm2/s, respectively, and the standard apparent potential of the Sm2+/3+ couple was estimated to be -0.82 V vs Ag|Ag+ at 450 °C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation (E°′ = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M-1 cm-1, respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f6 to 4f55d1 transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm3+ ion in the LiCl-KCl melt at 450 °C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm2+ ion in the solidified LCl-KCl salt at room temperature.

Original languageEnglish
Pages (from-to)8299-8306
Number of pages8
JournalInorganic Chemistry
Volume57
Issue number14
DOIs
Publication statusPublished - 2018 Jul 16

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt'. Together they form a unique fingerprint.

  • Cite this