TY - JOUR
T1 - Elliptic-blending second-moment turbulence closure using an algebraic anisotropic dissipation rate tensor model
AU - Shin, Jong Keun
AU - Seo, Jeong Sik
AU - Choi, Young Don
PY - 2009
Y1 - 2009
N2 - This study describes the amendment of an algebraic anisotropic dissipation rate model (ADRM) and its application to various turbulent flows to test the model's performance. Modeling anisotropies for the turbulence dissipation rate is considered by an analysis of the exact transport equation for the dissipation rate tensor. The second-moment closure, which is based on the explicit amended ADRM, is proposed and it is closely linked to the elliptic-blending model that is used for the prediction of Reynolds stresses. To develop and calibrate the present elliptic-blending second-moment closure that uses the amended ADRM, firstly, the distributions of both the mean velocity and Reynolds stress are solved for flows in a fully developed non-rotating channel and a straight square duct. And then, the fully developed turbulent flows in a rotating channel and a rotating straight square duct are predicted to test the ability of the explicit amended ADRM that is combined with the rotation effect. The prediction results are directly compared with the DNS and the large-eddy simulation (LES) to assess the performance of the new model predictions and to show their reasonable agreement with the DNS and LES data for all the flow fields that are analyzed for the present study.
AB - This study describes the amendment of an algebraic anisotropic dissipation rate model (ADRM) and its application to various turbulent flows to test the model's performance. Modeling anisotropies for the turbulence dissipation rate is considered by an analysis of the exact transport equation for the dissipation rate tensor. The second-moment closure, which is based on the explicit amended ADRM, is proposed and it is closely linked to the elliptic-blending model that is used for the prediction of Reynolds stresses. To develop and calibrate the present elliptic-blending second-moment closure that uses the amended ADRM, firstly, the distributions of both the mean velocity and Reynolds stress are solved for flows in a fully developed non-rotating channel and a straight square duct. And then, the fully developed turbulent flows in a rotating channel and a rotating straight square duct are predicted to test the ability of the explicit amended ADRM that is combined with the rotation effect. The prediction results are directly compared with the DNS and the large-eddy simulation (LES) to assess the performance of the new model predictions and to show their reasonable agreement with the DNS and LES data for all the flow fields that are analyzed for the present study.
UR - http://www.scopus.com/inward/record.url?scp=66149090806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66149090806&partnerID=8YFLogxK
U2 - 10.1088/0169-5983/41/3/035501
DO - 10.1088/0169-5983/41/3/035501
M3 - Article
AN - SCOPUS:66149090806
VL - 41
JO - Fluid Dynamics Research
JF - Fluid Dynamics Research
SN - 0169-5983
IS - 3
M1 - 035501
ER -