Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination

Hae Jin Kim, Sung Han Ok, Sung Chul Bahn, Juno Jang, Sung Aeong Oh, Soon Ki Park, David Twell, Stephen Beungtae Ryu, Jeong Sheop Shin

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

The phospholipase A2 (PLA2) superfamily of lipolytic enzymes is involved in a number of essential biological processes, such as inflammation, development, host defense, and signal transduction. Despite the proven involvement of plant PLA2s in many biological functions, including senescence, wounding, elicitor and stress responses, and pathogen defense, relatively little is known about plant PLA2s, and their genes essentially remain uncharacterized. We characterized three of four Arabidopsis thaliana PLA2 paralogs (PLA2-β, -γ, and -δ) and found that they (1) are expressed during pollen development, (2) localize to the endoplasmic reticulum and/or Golgi, and (3) play critical roles in pollen development and germination and tube growth. The suppression of PLA2 using the RNA interference approach resulted in pollen lethality. The inhibition of pollen germination by pharmacological PLA2 inhibitors was rescued by a lipid signal molecule, lysophosphatidyl ethanolamine. Based on these results, we propose that plant reproduction, in particular, male gametophyte development, requires the activities of the lipid-modifying PLA2s that are conserved in other organisms.

Original languageEnglish
Pages (from-to)94-110
Number of pages17
JournalPlant Cell
Volume23
Issue number1
DOIs
Publication statusPublished - 2011 Jan

ASJC Scopus subject areas

  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'Endoplasmic reticulum- and Golgi-localized phospholipase A<sub>2</sub> plays critical roles in Arabidopsis pollen development and germination'. Together they form a unique fingerprint.

  • Cite this