TY - JOUR
T1 - Engineered Human Intervertebral Disc Model Inducing Degenerative Microglial Proinflammation
AU - Hwang, Min Ho
AU - Kang, You Jung
AU - Son, Hyeong Guk
AU - Cho, Hansang
AU - Choi, Hyuk
N1 - Funding Information:
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A3A01091920, 2020R1F1A1068910, 2022R1I1A1A01054001, 2022R1I1A1A01063094, 2020R1A2C2010285) and by the National Research Foundation (I21SS7606036).
Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1β and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.
AB - Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1β and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.
KW - chemotaxis
KW - human nucleus pulposus
KW - intervertebral disc degeneration
KW - microglia
KW - proinflammation
UR - http://www.scopus.com/inward/record.url?scp=85140815493&partnerID=8YFLogxK
U2 - 10.3390/ijms232012216
DO - 10.3390/ijms232012216
M3 - Article
C2 - 36293070
AN - SCOPUS:85140815493
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1661-6596
IS - 20
M1 - 12216
ER -