Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber

Israel Torres Pineda, Yong Tae Kang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Mass transfer enhancement by the use of nanoparticles suspended in a liquid phase (known as nanofluids) has been studied in recent years with positive results. Different theories have been proposed to explain the improvement in mass transfer, however it has not been possible to elucidate a definite answer. While the theory is still uncertain the experimental work continues in areas that will benefit much such as non-reactive gas absorption. In this study carbon dioxide (CO2) absorption experiments are performed in a Taylor-Couette absorber at different rotational speeds. The base fluid for the experiments is methanol. Al2O3 and SiO2 nanoparticles are combined with methanol to produce nanofluids with the purpose of enhancing the absorption of the CO2 gas into the methanol. The system is equipped with a mass flow controller at the inlet and a mass flow meter at the outlet to obtain the absorption rate. The Taylor- Couette absorber performance is compared to a modified version in which trays were added to enhance the absorption rate. Experiments in co-current and counter-current flow modes are carried out. The results of continuous absorption are presented. In addition, the two-phase flow pattern of the CO2 gas bubbles and the liquid methanol in the Taylor-Couette absorber and the modified version is analyzed with pictures obtained by a high speed camera.

Original languageEnglish
Title of host publicationASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013
PublisherAmerican Society of Mechanical Engineers (ASME)
DOIs
Publication statusPublished - 2013 Jan 1
Externally publishedYes
EventASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013 - Hong Kong, China
Duration: 2013 Dec 112013 Dec 14

Other

OtherASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013
CountryChina
CityHong Kong
Period13/12/1113/12/14

Fingerprint

Carbon Dioxide
Methanol
Carbon dioxide
Gases
Mass transfer
Nanoparticles
Gas absorption
Experiments
High speed cameras
Liquids
Bubbles (in fluids)
Two phase flow
Flow patterns
Controllers
Fluids

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Cite this

Pineda, I. T., & Kang, Y. T. (2013). Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber. In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013 American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/MNHMT2013-22040

Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber. / Pineda, Israel Torres; Kang, Yong Tae.

ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013. American Society of Mechanical Engineers (ASME), 2013.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Pineda, IT & Kang, YT 2013, Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber. in ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013. American Society of Mechanical Engineers (ASME), ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013, Hong Kong, China, 13/12/11. https://doi.org/10.1115/MNHMT2013-22040
Pineda IT, Kang YT. Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber. In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013. American Society of Mechanical Engineers (ASME). 2013 https://doi.org/10.1115/MNHMT2013-22040
Pineda, Israel Torres ; Kang, Yong Tae. / Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber. ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013. American Society of Mechanical Engineers (ASME), 2013.
@inproceedings{597d9fa7d6bf46568561e33a00de39e7,
title = "Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber",
abstract = "Mass transfer enhancement by the use of nanoparticles suspended in a liquid phase (known as nanofluids) has been studied in recent years with positive results. Different theories have been proposed to explain the improvement in mass transfer, however it has not been possible to elucidate a definite answer. While the theory is still uncertain the experimental work continues in areas that will benefit much such as non-reactive gas absorption. In this study carbon dioxide (CO2) absorption experiments are performed in a Taylor-Couette absorber at different rotational speeds. The base fluid for the experiments is methanol. Al2O3 and SiO2 nanoparticles are combined with methanol to produce nanofluids with the purpose of enhancing the absorption of the CO2 gas into the methanol. The system is equipped with a mass flow controller at the inlet and a mass flow meter at the outlet to obtain the absorption rate. The Taylor- Couette absorber performance is compared to a modified version in which trays were added to enhance the absorption rate. Experiments in co-current and counter-current flow modes are carried out. The results of continuous absorption are presented. In addition, the two-phase flow pattern of the CO2 gas bubbles and the liquid methanol in the Taylor-Couette absorber and the modified version is analyzed with pictures obtained by a high speed camera.",
author = "Pineda, {Israel Torres} and Kang, {Yong Tae}",
year = "2013",
month = "1",
day = "1",
doi = "10.1115/MNHMT2013-22040",
language = "English",
booktitle = "ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013",
publisher = "American Society of Mechanical Engineers (ASME)",

}

TY - GEN

T1 - Enhanced absorption of carbon dioxide gas by methanol based nanofluids in a taylor-couette absorber

AU - Pineda, Israel Torres

AU - Kang, Yong Tae

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Mass transfer enhancement by the use of nanoparticles suspended in a liquid phase (known as nanofluids) has been studied in recent years with positive results. Different theories have been proposed to explain the improvement in mass transfer, however it has not been possible to elucidate a definite answer. While the theory is still uncertain the experimental work continues in areas that will benefit much such as non-reactive gas absorption. In this study carbon dioxide (CO2) absorption experiments are performed in a Taylor-Couette absorber at different rotational speeds. The base fluid for the experiments is methanol. Al2O3 and SiO2 nanoparticles are combined with methanol to produce nanofluids with the purpose of enhancing the absorption of the CO2 gas into the methanol. The system is equipped with a mass flow controller at the inlet and a mass flow meter at the outlet to obtain the absorption rate. The Taylor- Couette absorber performance is compared to a modified version in which trays were added to enhance the absorption rate. Experiments in co-current and counter-current flow modes are carried out. The results of continuous absorption are presented. In addition, the two-phase flow pattern of the CO2 gas bubbles and the liquid methanol in the Taylor-Couette absorber and the modified version is analyzed with pictures obtained by a high speed camera.

AB - Mass transfer enhancement by the use of nanoparticles suspended in a liquid phase (known as nanofluids) has been studied in recent years with positive results. Different theories have been proposed to explain the improvement in mass transfer, however it has not been possible to elucidate a definite answer. While the theory is still uncertain the experimental work continues in areas that will benefit much such as non-reactive gas absorption. In this study carbon dioxide (CO2) absorption experiments are performed in a Taylor-Couette absorber at different rotational speeds. The base fluid for the experiments is methanol. Al2O3 and SiO2 nanoparticles are combined with methanol to produce nanofluids with the purpose of enhancing the absorption of the CO2 gas into the methanol. The system is equipped with a mass flow controller at the inlet and a mass flow meter at the outlet to obtain the absorption rate. The Taylor- Couette absorber performance is compared to a modified version in which trays were added to enhance the absorption rate. Experiments in co-current and counter-current flow modes are carried out. The results of continuous absorption are presented. In addition, the two-phase flow pattern of the CO2 gas bubbles and the liquid methanol in the Taylor-Couette absorber and the modified version is analyzed with pictures obtained by a high speed camera.

UR - http://www.scopus.com/inward/record.url?scp=84901781915&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901781915&partnerID=8YFLogxK

U2 - 10.1115/MNHMT2013-22040

DO - 10.1115/MNHMT2013-22040

M3 - Conference contribution

AN - SCOPUS:84901781915

BT - ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013

PB - American Society of Mechanical Engineers (ASME)

ER -