Enhancement of Perivascular Spaces in 7 T MR Image using Haar Transform of Non-local Cubes and Block-matching Filtering

Yingkun Hou, Sang Hyun Park, Qian Wang, Jun Zhang, Xiaopeng Zong, Weili Lin, Dinggang Shen

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Perivascular spaces (PVSs) in brain have a close relationship with typical neurological diseases. The quantitative studies of PVSs are meaningful but usually difficult, due to their thin and weak signals and also background noise in the 7 T brain magnetic resonance images (MRI). To clearly distinguish the PVSs in the 7 T MRI, we propose a novel PVS enhancement method based on the Haar transform of non-local cubes. Specifically, we extract a certain number of cubes from a small neighbor to form a cube group, and then perform Haar transform on each cube group. The Haar transform coefficients are processed using a nonlinear function to amplify the weak signals relevant to the PVSs and to suppress the noise. The enhanced image is reconstructed using the inverse Haar transform of the processed coefficients. Finally, we perform a block-matching 4D filtering on the enhanced image to further remove any remaining noise, and thus obtain an enhanced and denoised 7 T MRI for PVS segmentation. We apply two existing methods to complete PVS segmentation, i.e., (1) vesselness-Thresholding and (2) random forest classification. The experimental results show that the PVS segmentation performances can be significantly improved by using the enhanced and denoised 7 T MRI.

Original languageEnglish
Article number8569
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 2017 Dec 1

Fingerprint

augmentation
magnetic resonance
brain
background noise
coefficients

ASJC Scopus subject areas

  • General

Cite this

Enhancement of Perivascular Spaces in 7 T MR Image using Haar Transform of Non-local Cubes and Block-matching Filtering. / Hou, Yingkun; Park, Sang Hyun; Wang, Qian; Zhang, Jun; Zong, Xiaopeng; Lin, Weili; Shen, Dinggang.

In: Scientific Reports, Vol. 7, No. 1, 8569, 01.12.2017.

Research output: Contribution to journalArticle

Hou, Yingkun ; Park, Sang Hyun ; Wang, Qian ; Zhang, Jun ; Zong, Xiaopeng ; Lin, Weili ; Shen, Dinggang. / Enhancement of Perivascular Spaces in 7 T MR Image using Haar Transform of Non-local Cubes and Block-matching Filtering. In: Scientific Reports. 2017 ; Vol. 7, No. 1.
@article{c00e19ff0ed54582a92f5f40f5174b4a,
title = "Enhancement of Perivascular Spaces in 7 T MR Image using Haar Transform of Non-local Cubes and Block-matching Filtering",
abstract = "Perivascular spaces (PVSs) in brain have a close relationship with typical neurological diseases. The quantitative studies of PVSs are meaningful but usually difficult, due to their thin and weak signals and also background noise in the 7 T brain magnetic resonance images (MRI). To clearly distinguish the PVSs in the 7 T MRI, we propose a novel PVS enhancement method based on the Haar transform of non-local cubes. Specifically, we extract a certain number of cubes from a small neighbor to form a cube group, and then perform Haar transform on each cube group. The Haar transform coefficients are processed using a nonlinear function to amplify the weak signals relevant to the PVSs and to suppress the noise. The enhanced image is reconstructed using the inverse Haar transform of the processed coefficients. Finally, we perform a block-matching 4D filtering on the enhanced image to further remove any remaining noise, and thus obtain an enhanced and denoised 7 T MRI for PVS segmentation. We apply two existing methods to complete PVS segmentation, i.e., (1) vesselness-Thresholding and (2) random forest classification. The experimental results show that the PVS segmentation performances can be significantly improved by using the enhanced and denoised 7 T MRI.",
author = "Yingkun Hou and Park, {Sang Hyun} and Qian Wang and Jun Zhang and Xiaopeng Zong and Weili Lin and Dinggang Shen",
year = "2017",
month = "12",
day = "1",
doi = "10.1038/s41598-017-09336-5",
language = "English",
volume = "7",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Enhancement of Perivascular Spaces in 7 T MR Image using Haar Transform of Non-local Cubes and Block-matching Filtering

AU - Hou, Yingkun

AU - Park, Sang Hyun

AU - Wang, Qian

AU - Zhang, Jun

AU - Zong, Xiaopeng

AU - Lin, Weili

AU - Shen, Dinggang

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Perivascular spaces (PVSs) in brain have a close relationship with typical neurological diseases. The quantitative studies of PVSs are meaningful but usually difficult, due to their thin and weak signals and also background noise in the 7 T brain magnetic resonance images (MRI). To clearly distinguish the PVSs in the 7 T MRI, we propose a novel PVS enhancement method based on the Haar transform of non-local cubes. Specifically, we extract a certain number of cubes from a small neighbor to form a cube group, and then perform Haar transform on each cube group. The Haar transform coefficients are processed using a nonlinear function to amplify the weak signals relevant to the PVSs and to suppress the noise. The enhanced image is reconstructed using the inverse Haar transform of the processed coefficients. Finally, we perform a block-matching 4D filtering on the enhanced image to further remove any remaining noise, and thus obtain an enhanced and denoised 7 T MRI for PVS segmentation. We apply two existing methods to complete PVS segmentation, i.e., (1) vesselness-Thresholding and (2) random forest classification. The experimental results show that the PVS segmentation performances can be significantly improved by using the enhanced and denoised 7 T MRI.

AB - Perivascular spaces (PVSs) in brain have a close relationship with typical neurological diseases. The quantitative studies of PVSs are meaningful but usually difficult, due to their thin and weak signals and also background noise in the 7 T brain magnetic resonance images (MRI). To clearly distinguish the PVSs in the 7 T MRI, we propose a novel PVS enhancement method based on the Haar transform of non-local cubes. Specifically, we extract a certain number of cubes from a small neighbor to form a cube group, and then perform Haar transform on each cube group. The Haar transform coefficients are processed using a nonlinear function to amplify the weak signals relevant to the PVSs and to suppress the noise. The enhanced image is reconstructed using the inverse Haar transform of the processed coefficients. Finally, we perform a block-matching 4D filtering on the enhanced image to further remove any remaining noise, and thus obtain an enhanced and denoised 7 T MRI for PVS segmentation. We apply two existing methods to complete PVS segmentation, i.e., (1) vesselness-Thresholding and (2) random forest classification. The experimental results show that the PVS segmentation performances can be significantly improved by using the enhanced and denoised 7 T MRI.

UR - http://www.scopus.com/inward/record.url?scp=85027675467&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027675467&partnerID=8YFLogxK

U2 - 10.1038/s41598-017-09336-5

DO - 10.1038/s41598-017-09336-5

M3 - Article

C2 - 28819140

AN - SCOPUS:85027675467

VL - 7

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 8569

ER -