Abstract
The replacement of a small amount of organic cations with bulkier organic spacer cations in the perovskite precursor solution to form a 2D perovskite passivation agent (2D-PPA) in 3D perovskite thin films has recently become a promising strategy for developing perovskite solar cells (PSCs) with long-term stability and high efficiency. However, the long, bulky organic cations often form a barrier, hindering charge transport. Herein, for the first time, 2D-PPA engineering based on wide-bandgap (≈1.68 eV) perovskites are reported. Pentafluorophenethylammonium (F5PEA+) is introduced to partially replace phenylethylammonium (PEA+) as the 2D-PPA, forming a strong noncovalent interaction between the two bulky cations. The charge transport across and within the planes of pure 2D perovskites, based on mixed ammoniums, increases by a factor of five and three compared with that of mono-cation 2D perovskites, respectively. The perovskite films based on mixed-ammonium (F5PEA+-PEA+) 2D-PPA exhibit similar surface morphology and crystal structure, but longer carrier lifetime, lower exciton binding energy, less trap density and higher conductivity, in comparison with those using mono-cation (PEA+) 2D-PPA. The performance of PSCs based on mixed-cation 2D-PPA is enhanced from 19.58% to 21.10% along with improved stability, which is the highest performance for reported wide-bandgap PSCs.
Original language | English |
---|---|
Article number | 2000082 |
Journal | Solar RRL |
Volume | 4 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2020 Jun 1 |
Externally published | Yes |
Keywords
- 2D
- charge transports
- passivation agents
- perovskites
- solar cells
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering