Abstract
3,6-Anhydro-l-galactose (L-AHG) constitutes 50 % of agarose, which is the main component of red macroalgae. No information is currently available on the mass production, metabolic fate, or physiological effects of L-AHG. Here, agarose was converted to L-AHG in the following three steps: pre-hydrolysis of agarose into agaro-oligosaccharides by using acetic acid, hydrolysis of the agaro-oligosaccharides into neoagarobiose by an exo-agarase, and hydrolysis of neoagarobiose into L-AHG and galactose by a neoagarobiose hydrolase. After these three steps, L-AHG was purified by adsorption and gel permeation chromatographies. The final product obtained was 95.6 % pure L-AHG at a final yield of 4.0 % based on the initial agarose. In a cell proliferation assay, L-AHG at a concentration of 100 or 200 μg/ mL did not exhibit any significant cytotoxicity. In a skin whitening assay, 100 μg/ mL of L-AHG showed significantly lower melanin production compared to arbutin. L-AHG at 100 and 200 μg/ mL showed strong anti-inflammatory activity, indicating the significant suppression of nitrite production. This is the first report on the production of high-purity L-AHG and its physiological activities.
Original language | English |
---|---|
Pages (from-to) | 2961-2970 |
Number of pages | 10 |
Journal | Applied Microbiology and Biotechnology |
Volume | 97 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2013 Apr |
Keywords
- 3,6-Anhydro-l-galactose
- Agar
- Anti-inflammation
- Red macroalgae
- Skin whitening
ASJC Scopus subject areas
- Biotechnology
- Applied Microbiology and Biotechnology