Abstract
Background: Production of lysophosphatidylcholine (LPC) via enzyme-catalysed hydrolysis was studied. Three enzymes were employed to conduct the reactions at different temperatures. The starting material, phosphatidylcholine (PC), was dispersed in water (system A) and in ethanol (system B) to define the reaction mixture to carry out the trials. Results: It was found that the media employed and the type of biocatalyst (free or immobilized), clearly determine the kinetics of the reactions. PC was well dissolved in ethanol but an opaque emulsion was obtained when it was dissolved in water. Immobilized PLA1 and Novozym 435 were able to convert PC into LPC in ethanol, with yields of 50% and 58.51%, respectively, after 48h at 50°C. The highest degree of hydrolysis (70%) was reached with Lipase PS after 48h at 60°C in water. Conclusions: Both reaction media enabled fairly good yields but water was better. The present work proposes a simple reaction scheme compared with other reports in the literature where different substrates, additives and polar solvents have been employed. LPC has interesting properties as a bioemulsifier, which led us to develop new methods for its production.
Original language | English |
---|---|
Pages (from-to) | 1859-1863 |
Number of pages | 5 |
Journal | Journal of Chemical Technology and Biotechnology |
Volume | 88 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2013 Oct |
Keywords
- Hydrolysis
- Lipases
- Lysophosphatidylcholine
- Phosphatidylcholine
- Phospholipase
ASJC Scopus subject areas
- Biotechnology
- Chemical Engineering(all)
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Waste Management and Disposal
- Pollution
- Organic Chemistry
- Inorganic Chemistry