Epidermal growth factor: Porcine uterine luminal epithelial cell migratory signal during the peri-implantation period of pregnancy

Wooyoung Jeong, Seoungo Jung, Fuller W. Bazer, Gwonhwa Song, Jinyoung Kim

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The majority of early conceptus mortality in pregnancy occurs during the peri-implantation period, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period of pregnancy. This maternal-conceptus interaction is especially crucial in pigs because they have a non-invasive epitheliochorial placentation during a protracted peri-implantation period. During the pre-implantation period of pregnancy, conceptus survival and the establishment of pregnancy depend on the developing conceptus receiving an adequate supply of histotroph which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF) to embryogenesis or implantation in various mammalian species. EGF exhibits potential growth-promoting activities on the conceptus and endometrium; however, in the case of pigs, little is known its functions, especially their regulatory mechanisms at the maternal-conceptus interface. EGF receptor (EGFR) mRNA and protein are abundant in endometrial luminal (LE) and glandular (GE) epithelia and conceptus trophectoderm on Days 13-14 of pregnancy, suggesting that EGF provides an autocrine signal to uterine LE and GE just prior to implantation. Therefore, the objectives of this study were to determine: 1) the potential intracellular signaling pathways responsible for the activities of EGF in porcine uterine LE (pLE) cells; and 2) the changes in cellular activities induced by EGF. EGF treatment of pLE cells increased the abundance of phosphorylated (p)-ERK1/2, p-P70RSK and p-RPS6 compared to that for control cells. Furthermore, EGF-stimulated phosphorylation of ERK1/2 MAPK was inhibited in pLE cells transfected with an EGFR siRNA compared with control siRNA-transfected pLE cells. Moreover, EGF stimulated migration of pLE cells, but this stimulatory effect was blocked by U0126, a pharmacological inhibitor or ERK1/2 MAPK. Collectively, these results provide new insights into mechanisms whereby EGF regulates development of the peri-implantation uterine LE at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF effects migration of uterine LE and that those stimulatory effects are regulated via the ERK1/2 MAPK pathway during early pregnancy in pigs.

Original languageEnglish
Pages (from-to)66-74
Number of pages9
JournalMolecular and Cellular Endocrinology
Volume420
DOIs
Publication statusPublished - 2016 Jan 15

Fingerprint

Epidermal Growth Factor
Swine
Epithelial Cells
Pregnancy
Neutrophils
Mothers
Epidermal Growth Factor Receptor
Small Interfering RNA
Placentation
Phosphorylation
MAP Kinase Signaling System
Endometrium
Nutrients
Embryonic Development
Intercellular Signaling Peptides and Proteins
Epithelium
Pharmacology
Food
Messenger RNA
Mortality

Keywords

  • EGF
  • Migration
  • Pig
  • Trophoblast
  • Uterine luminal epithelium

ASJC Scopus subject areas

  • Endocrinology
  • Molecular Biology
  • Biochemistry

Cite this

Epidermal growth factor : Porcine uterine luminal epithelial cell migratory signal during the peri-implantation period of pregnancy. / Jeong, Wooyoung; Jung, Seoungo; Bazer, Fuller W.; Song, Gwonhwa; Kim, Jinyoung.

In: Molecular and Cellular Endocrinology, Vol. 420, 15.01.2016, p. 66-74.

Research output: Contribution to journalArticle

@article{3e9e29f20eff4e54ac5df3da04935423,
title = "Epidermal growth factor: Porcine uterine luminal epithelial cell migratory signal during the peri-implantation period of pregnancy",
abstract = "The majority of early conceptus mortality in pregnancy occurs during the peri-implantation period, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period of pregnancy. This maternal-conceptus interaction is especially crucial in pigs because they have a non-invasive epitheliochorial placentation during a protracted peri-implantation period. During the pre-implantation period of pregnancy, conceptus survival and the establishment of pregnancy depend on the developing conceptus receiving an adequate supply of histotroph which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF) to embryogenesis or implantation in various mammalian species. EGF exhibits potential growth-promoting activities on the conceptus and endometrium; however, in the case of pigs, little is known its functions, especially their regulatory mechanisms at the maternal-conceptus interface. EGF receptor (EGFR) mRNA and protein are abundant in endometrial luminal (LE) and glandular (GE) epithelia and conceptus trophectoderm on Days 13-14 of pregnancy, suggesting that EGF provides an autocrine signal to uterine LE and GE just prior to implantation. Therefore, the objectives of this study were to determine: 1) the potential intracellular signaling pathways responsible for the activities of EGF in porcine uterine LE (pLE) cells; and 2) the changes in cellular activities induced by EGF. EGF treatment of pLE cells increased the abundance of phosphorylated (p)-ERK1/2, p-P70RSK and p-RPS6 compared to that for control cells. Furthermore, EGF-stimulated phosphorylation of ERK1/2 MAPK was inhibited in pLE cells transfected with an EGFR siRNA compared with control siRNA-transfected pLE cells. Moreover, EGF stimulated migration of pLE cells, but this stimulatory effect was blocked by U0126, a pharmacological inhibitor or ERK1/2 MAPK. Collectively, these results provide new insights into mechanisms whereby EGF regulates development of the peri-implantation uterine LE at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF effects migration of uterine LE and that those stimulatory effects are regulated via the ERK1/2 MAPK pathway during early pregnancy in pigs.",
keywords = "EGF, Migration, Pig, Trophoblast, Uterine luminal epithelium",
author = "Wooyoung Jeong and Seoungo Jung and Bazer, {Fuller W.} and Gwonhwa Song and Jinyoung Kim",
year = "2016",
month = "1",
day = "15",
doi = "10.1016/j.mce.2015.11.023",
language = "English",
volume = "420",
pages = "66--74",
journal = "Molecular and Cellular Endocrinology",
issn = "0303-7207",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - Epidermal growth factor

T2 - Porcine uterine luminal epithelial cell migratory signal during the peri-implantation period of pregnancy

AU - Jeong, Wooyoung

AU - Jung, Seoungo

AU - Bazer, Fuller W.

AU - Song, Gwonhwa

AU - Kim, Jinyoung

PY - 2016/1/15

Y1 - 2016/1/15

N2 - The majority of early conceptus mortality in pregnancy occurs during the peri-implantation period, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period of pregnancy. This maternal-conceptus interaction is especially crucial in pigs because they have a non-invasive epitheliochorial placentation during a protracted peri-implantation period. During the pre-implantation period of pregnancy, conceptus survival and the establishment of pregnancy depend on the developing conceptus receiving an adequate supply of histotroph which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF) to embryogenesis or implantation in various mammalian species. EGF exhibits potential growth-promoting activities on the conceptus and endometrium; however, in the case of pigs, little is known its functions, especially their regulatory mechanisms at the maternal-conceptus interface. EGF receptor (EGFR) mRNA and protein are abundant in endometrial luminal (LE) and glandular (GE) epithelia and conceptus trophectoderm on Days 13-14 of pregnancy, suggesting that EGF provides an autocrine signal to uterine LE and GE just prior to implantation. Therefore, the objectives of this study were to determine: 1) the potential intracellular signaling pathways responsible for the activities of EGF in porcine uterine LE (pLE) cells; and 2) the changes in cellular activities induced by EGF. EGF treatment of pLE cells increased the abundance of phosphorylated (p)-ERK1/2, p-P70RSK and p-RPS6 compared to that for control cells. Furthermore, EGF-stimulated phosphorylation of ERK1/2 MAPK was inhibited in pLE cells transfected with an EGFR siRNA compared with control siRNA-transfected pLE cells. Moreover, EGF stimulated migration of pLE cells, but this stimulatory effect was blocked by U0126, a pharmacological inhibitor or ERK1/2 MAPK. Collectively, these results provide new insights into mechanisms whereby EGF regulates development of the peri-implantation uterine LE at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF effects migration of uterine LE and that those stimulatory effects are regulated via the ERK1/2 MAPK pathway during early pregnancy in pigs.

AB - The majority of early conceptus mortality in pregnancy occurs during the peri-implantation period, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period of pregnancy. This maternal-conceptus interaction is especially crucial in pigs because they have a non-invasive epitheliochorial placentation during a protracted peri-implantation period. During the pre-implantation period of pregnancy, conceptus survival and the establishment of pregnancy depend on the developing conceptus receiving an adequate supply of histotroph which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF) to embryogenesis or implantation in various mammalian species. EGF exhibits potential growth-promoting activities on the conceptus and endometrium; however, in the case of pigs, little is known its functions, especially their regulatory mechanisms at the maternal-conceptus interface. EGF receptor (EGFR) mRNA and protein are abundant in endometrial luminal (LE) and glandular (GE) epithelia and conceptus trophectoderm on Days 13-14 of pregnancy, suggesting that EGF provides an autocrine signal to uterine LE and GE just prior to implantation. Therefore, the objectives of this study were to determine: 1) the potential intracellular signaling pathways responsible for the activities of EGF in porcine uterine LE (pLE) cells; and 2) the changes in cellular activities induced by EGF. EGF treatment of pLE cells increased the abundance of phosphorylated (p)-ERK1/2, p-P70RSK and p-RPS6 compared to that for control cells. Furthermore, EGF-stimulated phosphorylation of ERK1/2 MAPK was inhibited in pLE cells transfected with an EGFR siRNA compared with control siRNA-transfected pLE cells. Moreover, EGF stimulated migration of pLE cells, but this stimulatory effect was blocked by U0126, a pharmacological inhibitor or ERK1/2 MAPK. Collectively, these results provide new insights into mechanisms whereby EGF regulates development of the peri-implantation uterine LE at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF effects migration of uterine LE and that those stimulatory effects are regulated via the ERK1/2 MAPK pathway during early pregnancy in pigs.

KW - EGF

KW - Migration

KW - Pig

KW - Trophoblast

KW - Uterine luminal epithelium

UR - http://www.scopus.com/inward/record.url?scp=84949034874&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84949034874&partnerID=8YFLogxK

U2 - 10.1016/j.mce.2015.11.023

DO - 10.1016/j.mce.2015.11.023

M3 - Article

C2 - 26620571

AN - SCOPUS:84949034874

VL - 420

SP - 66

EP - 74

JO - Molecular and Cellular Endocrinology

JF - Molecular and Cellular Endocrinology

SN - 0303-7207

ER -