TY - JOUR
T1 - Estimated interval-based checkpointing (EIC) on spot instances in cloud computing
AU - Jung, Daeyong
AU - Lim, Jongbeom
AU - Yu, Heonchang
AU - Suh, Taeweon
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - In cloud computing, users can rent computing resources from service providers according to their demand. Spot instances are unreliable resources provided by cloud computing services at low monetary cost. When users perform tasks on spot instances, there is an inevitable risk of failures that causes the delay of task execution time, resulting in a serious deterioration of quality of service (QoS). To deal with the problem on spot instances, we propose an estimated interval-based checkpointing (EIC) using weighted moving average. Our scheme sets the thresholds of price and execution time based on history. Whenever the actual price and the execution time cross over the thresholds, the system saves the state of spot instances. The Bollinger Bands is adopted to inform the ranges of estimated cost and execution time for user's discretion. The simulation results reveal that, compared to the HBC and REC, the EIC reduces the number of checkpoints and the rollback time. Consequently, the task execution time is decreased with EIC by HBC and REC. The EIC also provides the benefit of the cost reduction by HBC and REC, on average. We also found that the actual cost and execution time fall within the estimated ranges suggested by the Bollinger Bands.
AB - In cloud computing, users can rent computing resources from service providers according to their demand. Spot instances are unreliable resources provided by cloud computing services at low monetary cost. When users perform tasks on spot instances, there is an inevitable risk of failures that causes the delay of task execution time, resulting in a serious deterioration of quality of service (QoS). To deal with the problem on spot instances, we propose an estimated interval-based checkpointing (EIC) using weighted moving average. Our scheme sets the thresholds of price and execution time based on history. Whenever the actual price and the execution time cross over the thresholds, the system saves the state of spot instances. The Bollinger Bands is adopted to inform the ranges of estimated cost and execution time for user's discretion. The simulation results reveal that, compared to the HBC and REC, the EIC reduces the number of checkpoints and the rollback time. Consequently, the task execution time is decreased with EIC by HBC and REC. The EIC also provides the benefit of the cost reduction by HBC and REC, on average. We also found that the actual cost and execution time fall within the estimated ranges suggested by the Bollinger Bands.
UR - http://www.scopus.com/inward/record.url?scp=84902123973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902123973&partnerID=8YFLogxK
U2 - 10.1155/2014/217547
DO - 10.1155/2014/217547
M3 - Article
AN - SCOPUS:84902123973
VL - 2014
JO - Journal of Applied Mathematics
JF - Journal of Applied Mathematics
SN - 1110-757X
M1 - 217547
ER -