Estimates for cone multipliers associated with homogeneous functions

Sunggeum Hong, Joonil Kim, Chan Woo Yang

Research output: Contribution to journalArticle

Abstract

Let p C(Rn \ {0}) be homogeneous of degree one. We show that the convolution operator Tδf̂(ξ', ξn+1)=(1-p(ξ')/|ξn+1|)δ f̂(ξ',ξn+1), (ξ',ξn+1 R n×R1 is bounded from Hardy spaces H p(Rn+1) to LP(Rn+1) for δ > n(l/p - 1/2) - 1/2, 0 < p < 1.

Original languageEnglish
Pages (from-to)117-132
Number of pages16
JournalRocky Mountain Journal of Mathematics
Volume39
Issue number1
DOIs
Publication statusPublished - 2009 Apr 23

Fingerprint

Homogeneous Function
Convolution Operator
Hardy Space
Multiplier
Cone
Estimate

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Estimates for cone multipliers associated with homogeneous functions. / Hong, Sunggeum; Kim, Joonil; Yang, Chan Woo.

In: Rocky Mountain Journal of Mathematics, Vol. 39, No. 1, 23.04.2009, p. 117-132.

Research output: Contribution to journalArticle

@article{9f13033ec52d45bbb56b79709d7bdd2b,
title = "Estimates for cone multipliers associated with homogeneous functions",
abstract = "Let p C∞(Rn \ {0}) be homogeneous of degree one. We show that the convolution operator Tδf̂(ξ', ξn+1)=(1-p(ξ')/|ξn+1|)δ f̂(ξ',ξn+1), (ξ',ξn+1 R n×R1 is bounded from Hardy spaces H p(Rn+1) to LP(Rn+1) for δ > n(l/p - 1/2) - 1/2, 0 < p < 1.",
author = "Sunggeum Hong and Joonil Kim and Yang, {Chan Woo}",
year = "2009",
month = "4",
day = "23",
doi = "10.1216/RMJ-2009-39-1-117",
language = "English",
volume = "39",
pages = "117--132",
journal = "Rocky Mountain Journal of Mathematics",
issn = "0035-7596",
publisher = "Rocky Mountain Mathematics Consortium",
number = "1",

}

TY - JOUR

T1 - Estimates for cone multipliers associated with homogeneous functions

AU - Hong, Sunggeum

AU - Kim, Joonil

AU - Yang, Chan Woo

PY - 2009/4/23

Y1 - 2009/4/23

N2 - Let p C∞(Rn \ {0}) be homogeneous of degree one. We show that the convolution operator Tδf̂(ξ', ξn+1)=(1-p(ξ')/|ξn+1|)δ f̂(ξ',ξn+1), (ξ',ξn+1 R n×R1 is bounded from Hardy spaces H p(Rn+1) to LP(Rn+1) for δ > n(l/p - 1/2) - 1/2, 0 < p < 1.

AB - Let p C∞(Rn \ {0}) be homogeneous of degree one. We show that the convolution operator Tδf̂(ξ', ξn+1)=(1-p(ξ')/|ξn+1|)δ f̂(ξ',ξn+1), (ξ',ξn+1 R n×R1 is bounded from Hardy spaces H p(Rn+1) to LP(Rn+1) for δ > n(l/p - 1/2) - 1/2, 0 < p < 1.

UR - http://www.scopus.com/inward/record.url?scp=64849107838&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=64849107838&partnerID=8YFLogxK

U2 - 10.1216/RMJ-2009-39-1-117

DO - 10.1216/RMJ-2009-39-1-117

M3 - Article

AN - SCOPUS:64849107838

VL - 39

SP - 117

EP - 132

JO - Rocky Mountain Journal of Mathematics

JF - Rocky Mountain Journal of Mathematics

SN - 0035-7596

IS - 1

ER -