Estimates of the harmonic Bergman kernel on smooth domains

Hyeonbae Kang, Hyung Woon Koo

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

We obtain optimal size estimates of the harmonic Bergman kernel and its derivatives on smooth domains. Based on these estimates we derive mapping properties of the harmonic Bergman projection on Lebesgue spaces and Lipschitz spaces.

Original languageEnglish
Pages (from-to)220-239
Number of pages20
JournalJournal of Functional Analysis
Volume185
Issue number1
DOIs
Publication statusPublished - 2001 Sep 10

Fingerprint

Bergman Kernel
Harmonic
Bergman Projection
Lipschitz Spaces
Lebesgue Space
Estimate
Derivative

Keywords

  • Biharmonic equations
  • Harmonic Bergman kernel
  • Harmonic Bergman projection

ASJC Scopus subject areas

  • Analysis

Cite this

Estimates of the harmonic Bergman kernel on smooth domains. / Kang, Hyeonbae; Koo, Hyung Woon.

In: Journal of Functional Analysis, Vol. 185, No. 1, 10.09.2001, p. 220-239.

Research output: Contribution to journalArticle

@article{e4f297e9d987460a93945e5809f054f6,
title = "Estimates of the harmonic Bergman kernel on smooth domains",
abstract = "We obtain optimal size estimates of the harmonic Bergman kernel and its derivatives on smooth domains. Based on these estimates we derive mapping properties of the harmonic Bergman projection on Lebesgue spaces and Lipschitz spaces.",
keywords = "Biharmonic equations, Harmonic Bergman kernel, Harmonic Bergman projection",
author = "Hyeonbae Kang and Koo, {Hyung Woon}",
year = "2001",
month = "9",
day = "10",
doi = "10.1006/jfan.2001.3761",
language = "English",
volume = "185",
pages = "220--239",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Estimates of the harmonic Bergman kernel on smooth domains

AU - Kang, Hyeonbae

AU - Koo, Hyung Woon

PY - 2001/9/10

Y1 - 2001/9/10

N2 - We obtain optimal size estimates of the harmonic Bergman kernel and its derivatives on smooth domains. Based on these estimates we derive mapping properties of the harmonic Bergman projection on Lebesgue spaces and Lipschitz spaces.

AB - We obtain optimal size estimates of the harmonic Bergman kernel and its derivatives on smooth domains. Based on these estimates we derive mapping properties of the harmonic Bergman projection on Lebesgue spaces and Lipschitz spaces.

KW - Biharmonic equations

KW - Harmonic Bergman kernel

KW - Harmonic Bergman projection

UR - http://www.scopus.com/inward/record.url?scp=0035840457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035840457&partnerID=8YFLogxK

U2 - 10.1006/jfan.2001.3761

DO - 10.1006/jfan.2001.3761

M3 - Article

AN - SCOPUS:0035840457

VL - 185

SP - 220

EP - 239

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 1

ER -