Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification

Huihui Chen, Yining Zhang, Limei Zhang, Lishan Qiao, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

Abstract

Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of the popular preprocessing steps is data-scrubbing that aims at removing “bad” volumes from the fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improves the baseline methods.

Original languageEnglish
Article number595322
JournalFrontiers in Aging Neuroscience
Volume12
DOIs
Publication statusPublished - 2021 Jan 14

Keywords

  • Pearson's correlation
  • functional magnetic resonance imaging
  • index terms-brain functional network
  • mild cognitive impairment
  • scrubbing
  • sparse re presentation

ASJC Scopus subject areas

  • Ageing
  • Cognitive Neuroscience

Fingerprint Dive into the research topics of 'Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification'. Together they form a unique fingerprint.

Cite this