Estimating fuel-efficient air plane trajectories using machine learning

Jaiteg Singh, Gaurav Goyal, Farman Ali, Babar Shah, Sangheon Pack

Research output: Contribution to journalArticlepeer-review

Abstract

Airline industry has witnessed a tremendous growth in the recent past. Percentage of people choosing air travel as first choice to commute is continuously increasing. Highly demanding and congested air routes are resulting in inadvertent delays, additional fuel consumption and high emission of greenhouse gases. Trajectory planning involves creation identification of cost-effective flight plans for optimal utilization of fuel and time. This situation warrants the need of an intelligent system for dynamic planning of optimized flight trajectories with least human intervention required. In this paper, an algorithm for dynamic planning of optimized flight trajectories has been proposed. The proposed algorithm divides the airspace into four dimensional cubes and calculate a dynamic score for each cube to cumulatively represent estimated weather, aerodynamic drag and air traffic within that virtual cube. There are several constraints like simultaneous flight separation rules, weather conditions like air temperature, pressure, humidity, wind speed and direction that pose a real challenge for calculating optimal flight trajectories. To validate the proposed methodology, a case analysis was undertaken within Indian airspace. The flight routes were simulated for four different air routes within Indian airspace. The experiment results observed a seven percent reduction in drag values on the predicted path, hence indicates reduction in carbon footprint and better fuel economy.

Original languageEnglish
Pages (from-to)6189-6204
Number of pages16
JournalComputers, Materials and Continua
Volume70
Issue number3
DOIs
Publication statusPublished - 2022

Keywords

  • Airplane trajectory
  • Coefficient of drag
  • Four-dimensional trajectory prediction
  • Machine learning
  • Route planning
  • Stochastic processes

ASJC Scopus subject areas

  • Biomaterials
  • Modelling and Simulation
  • Mechanics of Materials
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Estimating fuel-efficient air plane trajectories using machine learning'. Together they form a unique fingerprint.

Cite this