Abstract
Biodegradable porous poly(L-lactic acid) (PLLA) scaffolds were prepared using gas foaming method. The PLLA scaffolds with a hydrophobic surface were subjected to Ar plasma treatment and in situ acrylic acid (AA) grafting to obtain hydrophilic PLLA scaffold (PLLA-PAA). Cell-adhesive ROD peptide was then immobilized onto the AA-grafted PLLA (PLLA-PAA-RGD). Once rabbit bone marrow-derived mesenchymal stem cells (BM-MSC) were isolated, MSCs were seeded into PLLA control, PLLA-PAA, and PLLA-PAA-RGD scaffold and cultured for up to 4 weeks in chondrogenic medium with the addition of 10 ng/ml transforming growth factor (TGF)-β1. Surface analysis of AA-grafted PLLA identified significant alterations of surface characteristics, including reduced contact angle and different atomic compositions. From WST-1 assay at 4 weeks, cells were found more proliferative in PLLA-PAA than the others. Upon the histological analysis of Safranin O staining, chondrogenic differentiation of MSCs appeared to be progressed more actively in PLLA-PAA. The effect of RGD immobilization on MSC differentiation was barely notable.
Original language | English |
---|---|
Pages (from-to) | 297-300 |
Number of pages | 4 |
Journal | Key Engineering Materials |
Volume | 342-343 |
DOIs | |
Publication status | Published - 2007 |
Keywords
- AA grafting
- Chondrogenic differentiation
- RGD
- Scaffold
- Stem cell
- Surface modification
- Tissue engineering
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering