Evaluation of thawing and stress restoration method for artificial frozen sandy soils using sensors

Jongchan Kim, Jong Sub Lee, Cody Arnold, Sang Yeob Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Undisturbed frozen samples can be efficiently obtained using the artificial ground freezing method. Thereafter, the restoration of in situ conditions, such as stress and density after thawing, is critical for laboratory testing. This study aims to experimentally explore the effects of thawing and the in situ stress restoration process on the geomechanical properties of sandy soils. Specimens were prepared at a relative density of 60% and frozen at −20 °C under the vertical stress of 100 kPa. After freezing, the specimens placed in the triaxial cell underwent thawing and consolidation phases with various drainage and confining stress conditions, followed by the shear phase. The elastic wave signals and axial deformation were measured during the entire protocol; the shear strength was evaluated from the triaxial compression test. Monotonic and cyclic simple shear tests were con-ducted to determine the packing density effect on liquefaction resistance. The results show that axial deformation, stiffness, and strength are minimized for a specimen undergoing drained thawing, restoring the initial stress during the consolidation phase, and that denser specimens are less susceptible to liquefaction. Results highlight that the thawing and stress restoration process should be considered to prevent the overestimation of stiffness, strength, and liquefaction resistance of sandy soils.

Original languageEnglish
Article number1916
Pages (from-to)1-18
Number of pages18
JournalSensors
Volume21
Issue number5
DOIs
Publication statusPublished - 2021 Mar 1

Keywords

  • Artificial ground freezing
  • Frozen soils
  • Liquefaction
  • Stress restoration
  • Thawing

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Evaluation of thawing and stress restoration method for artificial frozen sandy soils using sensors'. Together they form a unique fingerprint.

Cite this