Evolution of protein structural classes and protein sequence families

In Geol Choi, Sung Hou Kim

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)


In protein structure space, protein structures cluster into four elongated regions when mapped based solely on similarity among the 3D structures. These four regions correspond to the four major classes of present-day proteins defined by the contents of secondary structure types and their topological arrangement. Evolution of and restriction to these four classes suggest that, in most cases, the evolution of genes may have been constrained or selected to those genetic changes that results in structurally stable proteins occupying one of the four "allowed" regions of the protein structure space, "structural selection," an important component of natural selection in gene evolution. Our studies on tracing the "common structural ancestor" for each protein sequence family of known structure suggest that: (i) recently emerged proteins belong mostly to three classes; (ii) the proteins that emerged earlier evolved to gain a new class; and (iii) the proteins that emerged earliest evolved to become the present-day proteins in the four major classes, with the fourth-class proteins becoming the most dominant population. Furthermore, our studies also show that not all present-day proteins evolved from one single set of proteins in the last common ancestral organism, but new common ancestral proteins were "born" at different evolutionary times, not traceable to one or two ancestral proteins: "the multiple birth model" for the evolution of protein sequence families.

Original languageEnglish
Pages (from-to)14056-14061
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number38
Publication statusPublished - 2006 Sept 19
Externally publishedYes


  • Common structural ancestor
  • Evolutionary age
  • Protein fold classes
  • Protein structure universe

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Evolution of protein structural classes and protein sequence families'. Together they form a unique fingerprint.

Cite this