Exogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo

Mi Jung Kim, You Sun Lee, Yun Mi Yoo, Jong Jin Choi, Ha Na Kim, Changhee Kang, Ji Min Yu, Sung Hwan Moon, Aeri Kim, Chan Wha Kim

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Proliferative and migratory abilities of fibroblasts are essential for wound healing at the skin surface. Cytoplasmic linker-associated protein-2 (CLASP2) was originally found to interact with cytoplasmic linker protein (CLIP)-170. CLASP2 plays an important role in microtubule stabilization and the microtubule-stabilizing activity of CLASP2 depends on its interactions with end binding (EB)-1 and CLIP-170. Although the microtubule-stabilizing role of CLASP2 is well established, the effects of CLASP2 on the migration and proliferation of fibroblasts remain unclear in the context of wound healing. Therefore, we tested the utilization of CLASP2 as a directly applied protein drug to improve wound healing by promoting the migration of effector cells, including skin fibroblasts, to the site of repair or injury using an in vivo excisional wound mouse model and in vitro Hs27 skin fibroblast model. Epidermal growth factor, which is a recognized contributor to cell proliferation and migration, was used as positive control. In vitro and in vivo, CLASP2 treatment significantly enhanced cell migration and accelerated wound closure. Furthermore, in vivo, the CLASP2-treated animal group displayed enhanced epidermal repair and collagen deposition. Next, we studied the mechanism of CLASP2 for wound healing. Increasing the abundance of intracellular free CLASP2 in skin fibroblasts by supplying exogenous CLASP2 seemed to stabilize microtubules through an interaction between CLASP2 and CLIP-170, as well as EB1. Exogenous CLASP2 also showed direct binding with IQGAP1, increasing both cyclic adenosine monophosphate activity and phosphorylation of glycogen synthase kinase 3β, which in turn reinstated the binding between free CLASP2 and IQGAP1. In summary, exogenous CLASP2 increased Hs27 skin fibroblast migration by interacting with IQGAP1 and other cytoskeletal linker proteins, such as CLIP-170 and EB1. Our results strongly suggest that CLASP2 can be developed in wound healing drugs for skin repair and/or regenerating cosmetic products.

Original languageEnglish
JournalWound Repair and Regeneration
DOIs
Publication statusPublished - 2019 Jan 1

Fingerprint

Wound Healing
Proteins
Fibroblasts
Microtubules
Skin
Cell Movement
In Vitro Techniques
Plakins
Wounds and Injuries
Glycogen Synthase Kinase 3
Epidermal Growth Factor
Cosmetics
Pharmaceutical Preparations
Cyclic AMP
Collagen

ASJC Scopus subject areas

  • Surgery
  • Dermatology

Cite this

Exogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo. / Kim, Mi Jung; Lee, You Sun; Yoo, Yun Mi; Choi, Jong Jin; Kim, Ha Na; Kang, Changhee; Yu, Ji Min; Moon, Sung Hwan; Kim, Aeri; Kim, Chan Wha.

In: Wound Repair and Regeneration, 01.01.2019.

Research output: Contribution to journalArticle

Kim, Mi Jung ; Lee, You Sun ; Yoo, Yun Mi ; Choi, Jong Jin ; Kim, Ha Na ; Kang, Changhee ; Yu, Ji Min ; Moon, Sung Hwan ; Kim, Aeri ; Kim, Chan Wha. / Exogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo. In: Wound Repair and Regeneration. 2019.
@article{739211af16eb48c2bbe8bf0f41f51e37,
title = "Exogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo",
abstract = "Proliferative and migratory abilities of fibroblasts are essential for wound healing at the skin surface. Cytoplasmic linker-associated protein-2 (CLASP2) was originally found to interact with cytoplasmic linker protein (CLIP)-170. CLASP2 plays an important role in microtubule stabilization and the microtubule-stabilizing activity of CLASP2 depends on its interactions with end binding (EB)-1 and CLIP-170. Although the microtubule-stabilizing role of CLASP2 is well established, the effects of CLASP2 on the migration and proliferation of fibroblasts remain unclear in the context of wound healing. Therefore, we tested the utilization of CLASP2 as a directly applied protein drug to improve wound healing by promoting the migration of effector cells, including skin fibroblasts, to the site of repair or injury using an in vivo excisional wound mouse model and in vitro Hs27 skin fibroblast model. Epidermal growth factor, which is a recognized contributor to cell proliferation and migration, was used as positive control. In vitro and in vivo, CLASP2 treatment significantly enhanced cell migration and accelerated wound closure. Furthermore, in vivo, the CLASP2-treated animal group displayed enhanced epidermal repair and collagen deposition. Next, we studied the mechanism of CLASP2 for wound healing. Increasing the abundance of intracellular free CLASP2 in skin fibroblasts by supplying exogenous CLASP2 seemed to stabilize microtubules through an interaction between CLASP2 and CLIP-170, as well as EB1. Exogenous CLASP2 also showed direct binding with IQGAP1, increasing both cyclic adenosine monophosphate activity and phosphorylation of glycogen synthase kinase 3β, which in turn reinstated the binding between free CLASP2 and IQGAP1. In summary, exogenous CLASP2 increased Hs27 skin fibroblast migration by interacting with IQGAP1 and other cytoskeletal linker proteins, such as CLIP-170 and EB1. Our results strongly suggest that CLASP2 can be developed in wound healing drugs for skin repair and/or regenerating cosmetic products.",
author = "Kim, {Mi Jung} and Lee, {You Sun} and Yoo, {Yun Mi} and Choi, {Jong Jin} and Kim, {Ha Na} and Changhee Kang and Yu, {Ji Min} and Moon, {Sung Hwan} and Aeri Kim and Kim, {Chan Wha}",
year = "2019",
month = "1",
day = "1",
doi = "10.1111/wrr.12713",
language = "English",
journal = "Wound Repair and Regeneration",
issn = "1067-1927",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Exogenous CLASP2 protein treatment enhances wound healing in vitro and in vivo

AU - Kim, Mi Jung

AU - Lee, You Sun

AU - Yoo, Yun Mi

AU - Choi, Jong Jin

AU - Kim, Ha Na

AU - Kang, Changhee

AU - Yu, Ji Min

AU - Moon, Sung Hwan

AU - Kim, Aeri

AU - Kim, Chan Wha

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Proliferative and migratory abilities of fibroblasts are essential for wound healing at the skin surface. Cytoplasmic linker-associated protein-2 (CLASP2) was originally found to interact with cytoplasmic linker protein (CLIP)-170. CLASP2 plays an important role in microtubule stabilization and the microtubule-stabilizing activity of CLASP2 depends on its interactions with end binding (EB)-1 and CLIP-170. Although the microtubule-stabilizing role of CLASP2 is well established, the effects of CLASP2 on the migration and proliferation of fibroblasts remain unclear in the context of wound healing. Therefore, we tested the utilization of CLASP2 as a directly applied protein drug to improve wound healing by promoting the migration of effector cells, including skin fibroblasts, to the site of repair or injury using an in vivo excisional wound mouse model and in vitro Hs27 skin fibroblast model. Epidermal growth factor, which is a recognized contributor to cell proliferation and migration, was used as positive control. In vitro and in vivo, CLASP2 treatment significantly enhanced cell migration and accelerated wound closure. Furthermore, in vivo, the CLASP2-treated animal group displayed enhanced epidermal repair and collagen deposition. Next, we studied the mechanism of CLASP2 for wound healing. Increasing the abundance of intracellular free CLASP2 in skin fibroblasts by supplying exogenous CLASP2 seemed to stabilize microtubules through an interaction between CLASP2 and CLIP-170, as well as EB1. Exogenous CLASP2 also showed direct binding with IQGAP1, increasing both cyclic adenosine monophosphate activity and phosphorylation of glycogen synthase kinase 3β, which in turn reinstated the binding between free CLASP2 and IQGAP1. In summary, exogenous CLASP2 increased Hs27 skin fibroblast migration by interacting with IQGAP1 and other cytoskeletal linker proteins, such as CLIP-170 and EB1. Our results strongly suggest that CLASP2 can be developed in wound healing drugs for skin repair and/or regenerating cosmetic products.

AB - Proliferative and migratory abilities of fibroblasts are essential for wound healing at the skin surface. Cytoplasmic linker-associated protein-2 (CLASP2) was originally found to interact with cytoplasmic linker protein (CLIP)-170. CLASP2 plays an important role in microtubule stabilization and the microtubule-stabilizing activity of CLASP2 depends on its interactions with end binding (EB)-1 and CLIP-170. Although the microtubule-stabilizing role of CLASP2 is well established, the effects of CLASP2 on the migration and proliferation of fibroblasts remain unclear in the context of wound healing. Therefore, we tested the utilization of CLASP2 as a directly applied protein drug to improve wound healing by promoting the migration of effector cells, including skin fibroblasts, to the site of repair or injury using an in vivo excisional wound mouse model and in vitro Hs27 skin fibroblast model. Epidermal growth factor, which is a recognized contributor to cell proliferation and migration, was used as positive control. In vitro and in vivo, CLASP2 treatment significantly enhanced cell migration and accelerated wound closure. Furthermore, in vivo, the CLASP2-treated animal group displayed enhanced epidermal repair and collagen deposition. Next, we studied the mechanism of CLASP2 for wound healing. Increasing the abundance of intracellular free CLASP2 in skin fibroblasts by supplying exogenous CLASP2 seemed to stabilize microtubules through an interaction between CLASP2 and CLIP-170, as well as EB1. Exogenous CLASP2 also showed direct binding with IQGAP1, increasing both cyclic adenosine monophosphate activity and phosphorylation of glycogen synthase kinase 3β, which in turn reinstated the binding between free CLASP2 and IQGAP1. In summary, exogenous CLASP2 increased Hs27 skin fibroblast migration by interacting with IQGAP1 and other cytoskeletal linker proteins, such as CLIP-170 and EB1. Our results strongly suggest that CLASP2 can be developed in wound healing drugs for skin repair and/or regenerating cosmetic products.

UR - http://www.scopus.com/inward/record.url?scp=85064008439&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064008439&partnerID=8YFLogxK

U2 - 10.1111/wrr.12713

DO - 10.1111/wrr.12713

M3 - Article

C2 - 30835922

AN - SCOPUS:85064008439

JO - Wound Repair and Regeneration

JF - Wound Repair and Regeneration

SN - 1067-1927

ER -