Abstract
As biochemical and functional studies of membrane protein remain a challenge, there is growing interest in the application of nanotechnology to solve the difficulties of developing membrane protein therapeutics. Exosome, composed of lipid bilayer enclosed nanosized extracellular vesicles, is a successful platform for providing a native membrane composition. This study reports an enzymatic exosome, which harbors native PH20 hyaluronidase (Exo-PH20), which is able to penetrate deeply into tumor foci via hyaluronan degradation, allowing tumor growth inhibition and increased T cell infiltration into the tumor. This exosome-based strategy is developed to overcome the immunosuppressive and anticancer therapy-resistant tumor microenvironment, which is characterized by an overly accumulated extracellular matrix. Notably, this engineered exosome with the native glycosylphosphatidylinositol-anchored form of hyaluronidase has a higher enzymatic activity than a truncated form of the recombinant protein. In addition, the exosome-mediated codelivery of PH20 hyaluronidase and a chemotherapeutic (doxorubicin) efficiently inhibits tumor growth. This exosome is designed to degrade hyaluronan, thereby augmenting nanoparticle penetration and drug diffusion. The results thus show that this is a promising exosome-based platform that harbors not only a membrane-associated enzyme with high activity but also therapeutic payloads.
Original language | English |
---|---|
Article number | 1703074 |
Journal | Advanced Functional Materials |
Volume | 28 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2018 Jan 31 |
Keywords
- GPI-anchored proteins
- PH20
- cancer therapy
- doxorubicin
- exosomes
ASJC Scopus subject areas
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics