TY - JOUR
T1 - Fabrication and evaluation of nanopillar-shaped phase-change memory devices
AU - Hong, Sung Hoon
AU - Shin, Ju Hyeon
AU - Bae, Byeong Ju
AU - Lee, Heon
PY - 2011/3
Y1 - 2011/3
N2 - In this study, nanopillar-shaped phase-change memory devices of various sizes were simply fabricated by nanosphere lithography, and their electrical characteristics were evaluated by conductive atomic force microscopy (AFM). As nanosphere materials, 180-nm diameter polystyrene balls were used for a size-controllable mask, silica balls with a diameter of 200nm for a high etching-resistance mask, and sub-50nm Ag nanoparticles were used for sub-50-nm-scale fabrication. Using the polystyrene balls, silica balls, and Ag nanoparticles, nanopillar-shaped phasechange memory devices with various diameters, heights as large as 1 μm, and sizes as small as less than 50nm were successfully fabricated. The electrical properties of the nanopillar-shaped Ge2Sb2Te5 devices were evaluated by conductive AFM with an electrical measurement system.
AB - In this study, nanopillar-shaped phase-change memory devices of various sizes were simply fabricated by nanosphere lithography, and their electrical characteristics were evaluated by conductive atomic force microscopy (AFM). As nanosphere materials, 180-nm diameter polystyrene balls were used for a size-controllable mask, silica balls with a diameter of 200nm for a high etching-resistance mask, and sub-50nm Ag nanoparticles were used for sub-50-nm-scale fabrication. Using the polystyrene balls, silica balls, and Ag nanoparticles, nanopillar-shaped phasechange memory devices with various diameters, heights as large as 1 μm, and sizes as small as less than 50nm were successfully fabricated. The electrical properties of the nanopillar-shaped Ge2Sb2Te5 devices were evaluated by conductive AFM with an electrical measurement system.
UR - http://www.scopus.com/inward/record.url?scp=79953087854&partnerID=8YFLogxK
U2 - 10.1143/JJAP.50.036501
DO - 10.1143/JJAP.50.036501
M3 - Article
AN - SCOPUS:79953087854
SN - 0021-4922
VL - 50
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 3
M1 - 036501
ER -