TY - GEN
T1 - Fabrication of antireflective films composed of high and low refractive index layers using layer-by-layer self-assembly method
AU - Bae, Jinhye
AU - Cho, Jinhan
AU - Char, Kookheon
PY - 2007
Y1 - 2007
N2 - We introduce a novel and versatile approach for controlling anti-reflective (AR) properties of multilayer films based on layer-by-layer (LbL) self-assembly (SA) method. For the fabrication of these films, blend (i.e., mixed) layers containing both polyanions (i.e., titanium precursor (TALH) and poly(sodium 4-styrenesulfonate) (PSS)) were assembled with polycation (i.e., poly(diallyldimethylammonium chloride) (PDAD)) for the formation of the high refractive index multilayers and on the other hand, the negatively charged silica particles with the diameter of about 100 nm were employed for low refractive index layer. The refractive index of TALH:PSS/PDAD multilayer was controlled by blending ratio and annealing temperature as TALH has the relatively high refractive index (n = 1.68) in comparison with that (n = 1.46) of conventional polyelectrolytes (PEs) at room temperature and furthermore these titanium precursors are partially changed into TiO2 with relatively high refractive indices (n = 1.50 - 1.81) at annealing temperature of 250 °C. In the case of silica particle layer used for low refractive index layer, the calculated refractive index was about 1.35 due to much vacancy among the adsorbed silica colloids although the inherent refractive index of silica material is about 1.45. As a result, the films composed of TALH:PSS/PDAD multilayers with tunable refractive index and silica colloidal layer can easily modulate the optical properties of multilayer films by blending ratio and heat treatment.
AB - We introduce a novel and versatile approach for controlling anti-reflective (AR) properties of multilayer films based on layer-by-layer (LbL) self-assembly (SA) method. For the fabrication of these films, blend (i.e., mixed) layers containing both polyanions (i.e., titanium precursor (TALH) and poly(sodium 4-styrenesulfonate) (PSS)) were assembled with polycation (i.e., poly(diallyldimethylammonium chloride) (PDAD)) for the formation of the high refractive index multilayers and on the other hand, the negatively charged silica particles with the diameter of about 100 nm were employed for low refractive index layer. The refractive index of TALH:PSS/PDAD multilayer was controlled by blending ratio and annealing temperature as TALH has the relatively high refractive index (n = 1.68) in comparison with that (n = 1.46) of conventional polyelectrolytes (PEs) at room temperature and furthermore these titanium precursors are partially changed into TiO2 with relatively high refractive indices (n = 1.50 - 1.81) at annealing temperature of 250 °C. In the case of silica particle layer used for low refractive index layer, the calculated refractive index was about 1.35 due to much vacancy among the adsorbed silica colloids although the inherent refractive index of silica material is about 1.45. As a result, the films composed of TALH:PSS/PDAD multilayers with tunable refractive index and silica colloidal layer can easily modulate the optical properties of multilayer films by blending ratio and heat treatment.
KW - Antireflective
KW - Layer-by-layer (LbL)
KW - Polyelectrolyte
KW - TALH
UR - http://www.scopus.com/inward/record.url?scp=38549110221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38549110221&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:38549110221
SN - 3908451310
SN - 9783908451310
T3 - Solid State Phenomena
SP - 559
EP - 562
BT - Advances in Nanomaterials and Processing - IUMRS - ICA - 2006 International Conference in Asia
PB - Trans Tech Publications Ltd
T2 - IUMRS International Conference in Asia 2006, IUMRS-ICA 2006
Y2 - 10 September 2006 through 14 September 2006
ER -