TY - GEN
T1 - Fabrication of microfluidic system for the assessment of cell migration on 3D micropatterned substrates
AU - Lee, Eun Joong
AU - Hwang, Chang Mo
AU - Baek, Dong Hyun
AU - Lee, Sang Hoon
PY - 2009
Y1 - 2009
N2 - Cell migration and proliferation are major process in wound healing, cancer metastasis and organogenesis during development. Many cells are related to recovery process of wound. Especially, fibroblasts act an important role in wound healing. Various cytokines such as platelet derived growth factor (PDGF) can induce fibroblast migration and widely studied to investigate the cell response under controlled cytokine microenvironments during wound healing. In real tissue healing process, cell microenvironments change with tissue types and anatomical characteristics of organs. With microfluidic system, we tried to mimic the natural microenvironment of wound healing, with gradient of PDGF, a fibroblast migration inducing cytokine, and patterned substrate with different orientation to PDGF gradient. Fibroblasts cultured in PDGF gradient micro fluidic chip showed cell migration under various micro environmental gradient conditions. Cells were cultured under PDGF gradient condition and different substrate pattern. Mouse fibroblast L929 cells were cultured in the microfluidic gradient. The results showed that most cells migrated along the substrate topological patterns under high concentration of PDGF. We developed long range sustaining micro fluidic channel and could analyze cell migration along the gradient of PDGF. Also, the cell migration on patterned extracellular environment shows that cells migrate along the extracellular 3D pattern rather than directly along the cytokine gradient when the pattern height is less than 1 μm. In this study, we could demonstrate that the extracellular pattern is more dominant to cell migration in combination with cytokine gradient in the wounded tissue when the environmental cues are 20 μm.
AB - Cell migration and proliferation are major process in wound healing, cancer metastasis and organogenesis during development. Many cells are related to recovery process of wound. Especially, fibroblasts act an important role in wound healing. Various cytokines such as platelet derived growth factor (PDGF) can induce fibroblast migration and widely studied to investigate the cell response under controlled cytokine microenvironments during wound healing. In real tissue healing process, cell microenvironments change with tissue types and anatomical characteristics of organs. With microfluidic system, we tried to mimic the natural microenvironment of wound healing, with gradient of PDGF, a fibroblast migration inducing cytokine, and patterned substrate with different orientation to PDGF gradient. Fibroblasts cultured in PDGF gradient micro fluidic chip showed cell migration under various micro environmental gradient conditions. Cells were cultured under PDGF gradient condition and different substrate pattern. Mouse fibroblast L929 cells were cultured in the microfluidic gradient. The results showed that most cells migrated along the substrate topological patterns under high concentration of PDGF. We developed long range sustaining micro fluidic channel and could analyze cell migration along the gradient of PDGF. Also, the cell migration on patterned extracellular environment shows that cells migrate along the extracellular 3D pattern rather than directly along the cytokine gradient when the pattern height is less than 1 μm. In this study, we could demonstrate that the extracellular pattern is more dominant to cell migration in combination with cytokine gradient in the wounded tissue when the environmental cues are 20 μm.
UR - http://www.scopus.com/inward/record.url?scp=77951009897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951009897&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2009.5333169
DO - 10.1109/IEMBS.2009.5333169
M3 - Conference contribution
C2 - 19964149
AN - SCOPUS:77951009897
SN - 9781424432967
T3 - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
SP - 6034
EP - 6037
BT - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PB - IEEE Computer Society
T2 - 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Y2 - 2 September 2009 through 6 September 2009
ER -