Fast neuroimaging-based retrieval for Alzheimer’s disease analysis

Xiaofeng Zhu, Kim Han Thung, Jun Zhang, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) landmark detection, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) landmark selection, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) hashing, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD. We have conducted experiments on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and demonstrated that our framework could achieve higher performance than the comparison methods, in terms of accuracy and speed (at least 100 times faster).

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 7th International Workshop, MLMI 2016 held in conjunction with MICCAI 2016, Proceedings
EditorsLi Wang, Heung-Il Suk, Yinghuan Shi, Ehsan Adeli, Qian Wang
PublisherSpringer Verlag
Pages313-321
Number of pages9
ISBN (Print)9783319471563
DOIs
Publication statusPublished - 2016
Event7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016 - Athens, Greece
Duration: 2016 Oct 172016 Oct 17

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10019 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016
CountryGreece
CityAthens
Period16/10/1716/10/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Fast neuroimaging-based retrieval for Alzheimer’s disease analysis'. Together they form a unique fingerprint.

  • Cite this

    Zhu, X., Thung, K. H., Zhang, J., & Shen, D. (2016). Fast neuroimaging-based retrieval for Alzheimer’s disease analysis. In L. Wang, H-I. Suk, Y. Shi, E. Adeli, & Q. Wang (Eds.), Machine Learning in Medical Imaging - 7th International Workshop, MLMI 2016 held in conjunction with MICCAI 2016, Proceedings (pp. 313-321). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10019 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-47157-0_38