Abstract
A theoretical description of a new experimental technique related to the fifth-order optical nonlinearity of a chromophore in condensed media is presented. Three optical pulses are used to create three consecutive electronic coherence states the duration of the first two of which are controlled. Four nonlinear response functions representative of the full set of 16 response functions are calculated. The wave vectors associated with these four nonlinear response functions are given by k1, 2k3 - k1, 2k3 - 2k2 + k1, and 2k2 - k1. We consider a Gaussian function for the inhomogeneous distribution of electronic transition energies and express the fifth-order three-pulse scattering (FOTS) signals in terms of homogeneous and inhomogeneous contributions. If the two delay times controlling the coherence periods are set equal, the "diagonal" signal appearing with wave vector 2k3 - 2k2 + k1 allows a clean separation of homogeneous and inhomogeneous broadening for a Markovian line broadening function with arbitrary inhomogeneous width. For non-Markovian line broadening functions, the diagonal FOTS signal is free of short-time distortion from the Gaussian components, but in this case, both diagonal and off-diagonal (i.e. unequal delay times) signals must be measured to obtain the homogeneous and inhomogeneous contributions. We illustrate the results in the Markovian limit and provide a preliminary discussion of the situation for non-Markovian line broadening functions. The short-time behavior is discussed and a more general model in which the bath is described as a set of harmonic oscillators characterized by a spectral density is outlined.
Original language | English |
---|---|
Pages (from-to) | 3478-3485 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry |
Volume | 98 |
Issue number | 13 |
Publication status | Published - 1994 Dec 1 |
Externally published | Yes |
Fingerprint
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
Cite this
Fifth-order three-pulse scattering spectroscopy : Can we separate homogeneous and inhomogeneous contributions to optical spectra? / Cho, Minhaeng; Fleming, Graham R.
In: Journal of Physical Chemistry, Vol. 98, No. 13, 01.12.1994, p. 3478-3485.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Fifth-order three-pulse scattering spectroscopy
T2 - Can we separate homogeneous and inhomogeneous contributions to optical spectra?
AU - Cho, Minhaeng
AU - Fleming, Graham R.
PY - 1994/12/1
Y1 - 1994/12/1
N2 - A theoretical description of a new experimental technique related to the fifth-order optical nonlinearity of a chromophore in condensed media is presented. Three optical pulses are used to create three consecutive electronic coherence states the duration of the first two of which are controlled. Four nonlinear response functions representative of the full set of 16 response functions are calculated. The wave vectors associated with these four nonlinear response functions are given by k1, 2k3 - k1, 2k3 - 2k2 + k1, and 2k2 - k1. We consider a Gaussian function for the inhomogeneous distribution of electronic transition energies and express the fifth-order three-pulse scattering (FOTS) signals in terms of homogeneous and inhomogeneous contributions. If the two delay times controlling the coherence periods are set equal, the "diagonal" signal appearing with wave vector 2k3 - 2k2 + k1 allows a clean separation of homogeneous and inhomogeneous broadening for a Markovian line broadening function with arbitrary inhomogeneous width. For non-Markovian line broadening functions, the diagonal FOTS signal is free of short-time distortion from the Gaussian components, but in this case, both diagonal and off-diagonal (i.e. unequal delay times) signals must be measured to obtain the homogeneous and inhomogeneous contributions. We illustrate the results in the Markovian limit and provide a preliminary discussion of the situation for non-Markovian line broadening functions. The short-time behavior is discussed and a more general model in which the bath is described as a set of harmonic oscillators characterized by a spectral density is outlined.
AB - A theoretical description of a new experimental technique related to the fifth-order optical nonlinearity of a chromophore in condensed media is presented. Three optical pulses are used to create three consecutive electronic coherence states the duration of the first two of which are controlled. Four nonlinear response functions representative of the full set of 16 response functions are calculated. The wave vectors associated with these four nonlinear response functions are given by k1, 2k3 - k1, 2k3 - 2k2 + k1, and 2k2 - k1. We consider a Gaussian function for the inhomogeneous distribution of electronic transition energies and express the fifth-order three-pulse scattering (FOTS) signals in terms of homogeneous and inhomogeneous contributions. If the two delay times controlling the coherence periods are set equal, the "diagonal" signal appearing with wave vector 2k3 - 2k2 + k1 allows a clean separation of homogeneous and inhomogeneous broadening for a Markovian line broadening function with arbitrary inhomogeneous width. For non-Markovian line broadening functions, the diagonal FOTS signal is free of short-time distortion from the Gaussian components, but in this case, both diagonal and off-diagonal (i.e. unequal delay times) signals must be measured to obtain the homogeneous and inhomogeneous contributions. We illustrate the results in the Markovian limit and provide a preliminary discussion of the situation for non-Markovian line broadening functions. The short-time behavior is discussed and a more general model in which the bath is described as a set of harmonic oscillators characterized by a spectral density is outlined.
UR - http://www.scopus.com/inward/record.url?scp=33751157496&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751157496&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:33751157496
VL - 98
SP - 3478
EP - 3485
JO - Journal of Physical Chemistry
JF - Journal of Physical Chemistry
SN - 0022-3654
IS - 13
ER -