Flexible sensor with electrophoretic polymerized graphene oxide/PEDOT:PSS composite for voltammetric determination of dopamine concentration

Seung Hyeon Ko, Seung Wook Kim, Yi Jae Lee

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We demonstrate a novel, flexible sensor with graphene oxide/PEDOT:PSS (GO/PEDOT:PSS) composite for voltammetric determination of selective low levels of dopamine. The well-distributed GO and EDOT:PSS suspension in water were deposited simply and polymerized. Consequently, the EDOT:PSS provided a strong interaction between GO and PEDOT:PSS, and it also had well-tailored interfacial properties that allowed the highly selective and sensitive determination of DA. Since the interfacial net charge is well-constructed, the sensor satisfies both the requirements of selectivity and the highly sensitive detection of low amounts of DA. In the results, the sensor with the GO/PEDOT:PSS composite exhibited a low interfacial impedance of about 281.46 ± 30.95 Ω at 100 Hz and a high charge storage capacity (53.94 ± 1.08 µC/cm2) for the detection of dopamine. In addition, the interference from ascorbic acid was reduced effectively to a minimum by electrostatic charge repelling of the AA and the distinct difference for the oxidation peak of the UA. Due to the fact that the GO/PEDOT:PSS composite had a net negative charge and, enhanced interfacial properties, the sensor showed a dopamine detection limit of 0.008 μM and a sensitivity of 69.3 µA/µMcm2.

Original languageEnglish
Article number21101
JournalScientific reports
Volume11
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Flexible sensor with electrophoretic polymerized graphene oxide/PEDOT:PSS composite for voltammetric determination of dopamine concentration'. Together they form a unique fingerprint.

Cite this