Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement

Sumit Sinha-Ray, Suman Sinha-Ray, Hari Sriram, Alexander L. Yarin

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10-7 s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 μm-diameter microchannel. These suspensions (1.5 wt% CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.

Original languageEnglish
Pages (from-to)494-508
Number of pages15
JournalLab on a Chip
Issue number3
Publication statusPublished - 2014 Feb 7

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Chemistry(all)
  • Biomedical Engineering


Dive into the research topics of 'Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement'. Together they form a unique fingerprint.

Cite this