Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement

Sumit Sinha-Ray, Suman Sinha-Ray, Hari Sriram, Alexander Yarin

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10-7 s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 μm-diameter microchannel. These suspensions (1.5 wt% CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.

Original languageEnglish
Pages (from-to)494-508
Number of pages15
JournalLab on a Chip - Miniaturisation for Chemistry and Biology
Volume14
Issue number3
DOIs
Publication statusPublished - 2014 Feb 7

Fingerprint

Carbon Nanotubes
Phase change materials
Waxes
Microchannels
Carbon nanotubes
Suspensions
Erythritol
Hot Temperature
Heat transfer
Temperature
Nanoparticles
Surface-Active Agents
Surface active agents
Fusion reactions
Oils
Pressure
Convection
Alkenes
Encapsulation
Microelectronics

ASJC Scopus subject areas

  • Biochemistry
  • Chemistry(all)
  • Bioengineering
  • Biomedical Engineering

Cite this

Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement. / Sinha-Ray, Sumit; Sinha-Ray, Suman; Sriram, Hari; Yarin, Alexander.

In: Lab on a Chip - Miniaturisation for Chemistry and Biology, Vol. 14, No. 3, 07.02.2014, p. 494-508.

Research output: Contribution to journalArticle

@article{993ac622009841169cf474430262b476,
title = "Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement",
abstract = "This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10-7 s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt{\%} with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt{\%} CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 μm-diameter microchannel. These suspensions (1.5 wt{\%} CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.",
author = "Sumit Sinha-Ray and Suman Sinha-Ray and Hari Sriram and Alexander Yarin",
year = "2014",
month = "2",
day = "7",
doi = "10.1039/c3lc50949d",
language = "English",
volume = "14",
pages = "494--508",
journal = "Lab on a Chip - Miniaturisation for Chemistry and Biology",
issn = "1473-0197",
publisher = "Royal Society of Chemistry",
number = "3",

}

TY - JOUR

T1 - Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement

AU - Sinha-Ray, Sumit

AU - Sinha-Ray, Suman

AU - Sriram, Hari

AU - Yarin, Alexander

PY - 2014/2/7

Y1 - 2014/2/7

N2 - This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10-7 s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 μm-diameter microchannel. These suspensions (1.5 wt% CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.

AB - This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10-7 s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 μm-diameter microchannel. These suspensions (1.5 wt% CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.

UR - http://www.scopus.com/inward/record.url?scp=84891427387&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84891427387&partnerID=8YFLogxK

U2 - 10.1039/c3lc50949d

DO - 10.1039/c3lc50949d

M3 - Article

VL - 14

SP - 494

EP - 508

JO - Lab on a Chip - Miniaturisation for Chemistry and Biology

JF - Lab on a Chip - Miniaturisation for Chemistry and Biology

SN - 1473-0197

IS - 3

ER -