TY - JOUR
T1 - Fluorescence ratiometry of monomer/excimer emissions in a space-through PET system
AU - Lee, Sun Hyun
AU - Kim, Su Ho
AU - Kim, Sung Kuk
AU - Jung, Jong Hwa
AU - Kim, Jong Seung
PY - 2005/11/11
Y1 - 2005/11/11
N2 - Fluorogenic calix[4]arenes (1 and 2) bearing a pendent ethyleneamine on their triazacrown rings, respectively, were synthesized in the cone conformation. Compared with 4, free 1 and 2 display a relatively weak emission, reflecting that a PET process from the pendent amine group (-CH 2CH2NH2) to the fluorogenic pyrenes is mainly operated. Addition of various metal ions or anions to the solution of 1 or 2 reduces the PET because the pendent alkylamine takes part in the complexation, causing their fluorescence spectra to be changed. When Pb2+, a quenching metal ion, is added to 1 or 2, their pyrene monomer emission is enhanced with their excimer emission quenched, which is due to conformational changes of the facing carbonyl groups as well as to the participation of the ethyleneamine into the three-dimensional Pb2+ ion encapsulation. In contrast, upon addition of alkali metal ions to the 1 and 2, both monomer and excimer emissions are observed to increase, which is attributable to the CHEF effect and the retained conformations. For anion sensing, both 1 and 2 show a high selectivity for F- ions over other anions tested. When the F- ion is bound to 1 or 2 by hydrogen bonding between the amide NH of the triazacrown ring and F-, both their monomer and excimer emissions are weakened due to PET from the bound F- to the pyrene units.
AB - Fluorogenic calix[4]arenes (1 and 2) bearing a pendent ethyleneamine on their triazacrown rings, respectively, were synthesized in the cone conformation. Compared with 4, free 1 and 2 display a relatively weak emission, reflecting that a PET process from the pendent amine group (-CH 2CH2NH2) to the fluorogenic pyrenes is mainly operated. Addition of various metal ions or anions to the solution of 1 or 2 reduces the PET because the pendent alkylamine takes part in the complexation, causing their fluorescence spectra to be changed. When Pb2+, a quenching metal ion, is added to 1 or 2, their pyrene monomer emission is enhanced with their excimer emission quenched, which is due to conformational changes of the facing carbonyl groups as well as to the participation of the ethyleneamine into the three-dimensional Pb2+ ion encapsulation. In contrast, upon addition of alkali metal ions to the 1 and 2, both monomer and excimer emissions are observed to increase, which is attributable to the CHEF effect and the retained conformations. For anion sensing, both 1 and 2 show a high selectivity for F- ions over other anions tested. When the F- ion is bound to 1 or 2 by hydrogen bonding between the amide NH of the triazacrown ring and F-, both their monomer and excimer emissions are weakened due to PET from the bound F- to the pyrene units.
UR - http://www.scopus.com/inward/record.url?scp=27744580209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27744580209&partnerID=8YFLogxK
U2 - 10.1021/jo051302s
DO - 10.1021/jo051302s
M3 - Article
C2 - 16268601
AN - SCOPUS:27744580209
VL - 70
SP - 9288
EP - 9295
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
SN - 0022-3263
IS - 23
ER -