Abstract
We propose an optimal duty-cycle selection method for steady state visual evoked potentials (SSVEP) based brain computer interface (BCI) system. In SSVEP based BCI, visual stimuli are usually selected in a low frequency range. However, previous studies showed that a higher frequency range is more visually comfortable than the low frequency range for SSVEP based BCI. In addition, frequencies of 15-25Hz ranges are provocative to cause photosensitivity epileptic seizure problem. We designed an experiment to select an optimal duty cycle visual flicker for each frequency in a range of 27.5Hz to 33.5Hz. We utilized canonical correlation analysis (CCA) in order to extract the frequency component features from multi-channel EEG data. The goal of this study was to select optimal visual flicker within minimum visual fatigue. Visual flickers with the largest amplitude among the duty-cycle higher than 50% were selected as optimum. The performance of the proposed system showed an average accuracy of 90%. In conclusion, we proposed a comfortable SSVEP based BCI system by reducing visual fatigue for the user (or patient), with encouraging results.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 2014 |
Event | 2014 International Winter Workshop on Brain-Computer Interface, BCI 2014 - Gangwon, Korea, Republic of Duration: 2014 Feb 17 → 2014 Feb 19 |
Other
Other | 2014 International Winter Workshop on Brain-Computer Interface, BCI 2014 |
---|---|
Country/Territory | Korea, Republic of |
City | Gangwon |
Period | 14/2/17 → 14/2/19 |
Keywords
- Brain-computer interface (BCI)
- Duty-cycle
- Steady state visual evoked potentials (SSVEP)
ASJC Scopus subject areas
- Human-Computer Interaction
- Human Factors and Ergonomics