Functional Expression of the Recombinant Spike Receptor Binding Domain of SARS-CoV-2 Omicron in the Periplasm of Escherichia coli

Woo Sung Kim, Ji Hyun Kim, Jisun Lee, Su Yeon Ka, Hee Do Chae, Inji Jung, Sang Taek Jung, Jung Hyun Na

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant known as Omicron has caused a rapid increase in recent global patients with coronavirus infectious disease 2019 (COVID-19). To overcome the COVID-19 Omicron variant, production of a recombinant spike receptor binding domain (RBD) is vital for developing a subunit vaccine or a neutralizing antibody. Although bacterial expression has many advantages in the production of recombinant proteins, the spike RBD expressed in a bacterial system experiences a folding problem related to disulfide bond formation. In this study, the soluble Omicron RBD was obtained by a disulfide isomerase-assisted periplasmic expression system in Escherichia coli. The Omicron RBD purified from E. coli was very well recognized by anti-SARS-CoV-2 antibodies, sotrovimab (S309), and CR3022, which were previously reported to bind to various SARS-CoV-2 variants. In addition, the kinetic parameters of the purified Omicron RBD upon binding to the human angiotensin-converting enzyme 2 (ACE2) were similar to those of the Omicron RBD produced in the mammalian expression system. These results suggest that an E. coli expression system would be suitable to produce functional and correctly folded spike RBDs of the next emerging SARS-CoV-2 variants quickly and inexpensively.

Original languageEnglish
Article number670
JournalBioengineering
Volume9
Issue number11
DOIs
Publication statusPublished - 2022 Nov

Keywords

  • E. coli
  • functional expression
  • omicron
  • spike receptor binding domain

ASJC Scopus subject areas

  • Bioengineering

Fingerprint

Dive into the research topics of 'Functional Expression of the Recombinant Spike Receptor Binding Domain of SARS-CoV-2 Omicron in the Periplasm of Escherichia coli'. Together they form a unique fingerprint.

Cite this