Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2

Jechan Lee, Dongho Choi, Eilhann E. Kwon, Yong Sik Ok

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

This study argues that CO2 can be used to modify the composition of bio-oil generated from hydrothermal liquefaction of two different microalgae such as Microcystis aeruginosa (M. aeruginosa) and Nannochloropsis oceanica (N. oceanica). Prior to hydrothermal liquefaction, the lipid content of microalgae was quantified as ∼2 wt% of M. aeruginosa and ∼14.5 wt% of N. oceanica. In addition, the thermal degradation of M. aeruginosa and N. oceanica was characterized to evaluate the influence of CO2 via quantifying major pyrolytic gases (i.e., H2, CH4, and CO). Hydrothermal liquefaction of these two microalgae was performed using a high-pressure batch reactor in N2 and CO2 atmospheres. The composition of chemical species containing N and O in bio-oil was significantly decreased under hydrothermal liquefaction in CO2, which meant that the quality of microalgae-derived bio-oil was improved. In addition, the use of CO2 allowed the production of more petro-diesel like bio-oil. This study suggests a practical means for utilizing CO2 for the production of high-quality bio-oil from toxic and economic microalgal biomass.

Original languageEnglish
Pages (from-to)412-418
Number of pages7
JournalEnergy
Volume137
DOIs
Publication statusPublished - 2017 Oct 15
Externally publishedYes

Keywords

  • Bio-oil modification
  • Carbon dioxide
  • Hydrothermal liquefaction
  • Microalgae
  • Thermo-chemical process

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Energy(all)
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Functional modification of hydrothermal liquefaction products of microalgal biomass using CO<sub>2</sub>'. Together they form a unique fingerprint.

  • Cite this