Gan and other materials for semiconductor spintronics

S. J. Pearton, Y. D. Park, C. R. Abernathy, M. E. Overberg, G. T. Thaler, Ji Hyun Kim, F. Ren

Research output: Contribution to journalArticle

26 Citations (Scopus)


Existing semiconductor electronic and photonic devices use the charge on electrons and holes to perform their specific functionality, such as signal processing or light emission. The field of semiconductor spintronics seeks to exploit the spin of charge carriers in new generations of transistors, lasers, and integrated magnetic sensors. The use of such devices depends on the availability of materials with practical magnetic-ordering temperatures. Here, we summarize recent progress in the development of GaN and other wide bandgap semiconductors that retain ferromagnetic properties above room temperature.

Original languageEnglish
Pages (from-to)288-297
Number of pages10
JournalJournal of Electronic Materials
Issue number5
Publication statusPublished - 2003 May 1
Externally publishedYes



  • Ferromagnetic properties
  • GaP
  • Integrated magnetic sensors
  • Lasers
  • Semiconductors
  • Spintronics

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Materials Science(all)
  • Electronic, Optical and Magnetic Materials
  • Physics and Astronomy (miscellaneous)

Cite this

Pearton, S. J., Park, Y. D., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Kim, J. H., & Ren, F. (2003). Gan and other materials for semiconductor spintronics. Journal of Electronic Materials, 32(5), 288-297.