TY - JOUR
T1 - Gene regulatory network analysis for triple-negative breast neoplasms by using gene expression data
AU - Jung, Hee Chan
AU - Kim, Sung Hwan
AU - Lee, Jeong Hoon
AU - Kim, Ju Han
AU - Han, Sung Won
N1 - Publisher Copyright:
© 2017 Korean Breast Cancer Society. All rights reserved.
PY - 2017/9
Y1 - 2017/9
N2 - Purpose: To better identify the physiology of triple-negative breast neoplasm (TNBN), we analyzed the TNBN gene regulatory network using gene expression data. Methods: We collected TNBN gene expression data from The Cancer Genome Atlas to construct a TNBN gene regulatory network using least absolute shrinkage and selection operator regression. In addition, we constructed a triple-positive breast neoplasm (TPBN) network for comparison. Furthermore, survival analysis based on gene expression levels and differentially expressed gene (DEG) analysis were carried out to support and compare the network analysis results, respectively. Results: The TNBN gene regulatory network, which followed a power-law distribution, had 10,237 vertices and 17,773 edges, with an average vertex-to-vertex distance of 8.6. The genes ZDHHC20 and RAPGEF6 were identified by centrality analysis to be important vertices. However, in the DEG analysis, we could not find meaningful fold changes in ZDHHC20 and RAPGEF6 between the TPBN and TNBN gene expression data. In the multivariate survival analysis, the hazard ratio for ZDHHC20 and RAPGEF6 was 1.677 (1.192–2.357) and 1.676 (1.222–2.299), respectively. Conclusion: Our TNBN gene regulatory network was a scale-free one, which means that the network would be easily destroyed if the hub vertices were attacked. Thus, it is important to identify the hub vertices in the network analysis. In the TNBN gene regulatory network, ZDHHC20 and RAPGEF6 were found to be oncogenes. Further study of these genes could help to reveal a novel method for treating TNBN in the future.
AB - Purpose: To better identify the physiology of triple-negative breast neoplasm (TNBN), we analyzed the TNBN gene regulatory network using gene expression data. Methods: We collected TNBN gene expression data from The Cancer Genome Atlas to construct a TNBN gene regulatory network using least absolute shrinkage and selection operator regression. In addition, we constructed a triple-positive breast neoplasm (TPBN) network for comparison. Furthermore, survival analysis based on gene expression levels and differentially expressed gene (DEG) analysis were carried out to support and compare the network analysis results, respectively. Results: The TNBN gene regulatory network, which followed a power-law distribution, had 10,237 vertices and 17,773 edges, with an average vertex-to-vertex distance of 8.6. The genes ZDHHC20 and RAPGEF6 were identified by centrality analysis to be important vertices. However, in the DEG analysis, we could not find meaningful fold changes in ZDHHC20 and RAPGEF6 between the TPBN and TNBN gene expression data. In the multivariate survival analysis, the hazard ratio for ZDHHC20 and RAPGEF6 was 1.677 (1.192–2.357) and 1.676 (1.222–2.299), respectively. Conclusion: Our TNBN gene regulatory network was a scale-free one, which means that the network would be easily destroyed if the hub vertices were attacked. Thus, it is important to identify the hub vertices in the network analysis. In the TNBN gene regulatory network, ZDHHC20 and RAPGEF6 were found to be oncogenes. Further study of these genes could help to reveal a novel method for treating TNBN in the future.
KW - Genes
KW - Oncogenes
KW - Triple negative breast neoplasms
UR - http://www.scopus.com/inward/record.url?scp=85030638005&partnerID=8YFLogxK
U2 - 10.4048/jbc.2017.20.3.240
DO - 10.4048/jbc.2017.20.3.240
M3 - Article
AN - SCOPUS:85030638005
SN - 1738-6756
VL - 20
SP - 240
EP - 245
JO - Journal of Breast Cancer
JF - Journal of Breast Cancer
IS - 3
ER -