Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications

Jieun Seo, Seon-Gyu Choi, Jung–Woo –W Park, Scott A. Whattam, Dong Woo Kim, In–Chang –C Ryu, Chang Whan Oh

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The Yonghwa phoscorite–carbonatite complex occurs as an isolated individual body with an inclined pipe shape within the Precambrian Gyeonggi Massif, South Korea. The phoscorite consists mainly of olivine, apatite, magnetite, carbonates, amphibole, and phlogopite, and can be subdivided into two types, olivine-rich and apatite-rich. The carbonatite is composed of calcite, Mg-rich dolomite, Fe-rich dolomite, magnetite, apatite, and/or siderite. Intensive fenitization occurred along the boundary between the complex and the wall rocks of leucocratic banded gneiss and garnet-bearing metabasite. The paragenetic sequences of the phoscorite–carbonatite complex demonstrate that the early crystallization of silicate minerals was followed by the crystallization of carbonates as the carbonatitic melt cooled. Magnetite occurs within the complex, and the carbonatites have Fe contents that are higher than typical ferrocarbonatites, due to the high magnetite contents. The rare earth elements (REEs) in the phoscorites and carbonatites are weakly fractionated and show enrichments of LREEs and Nb relative to HREEs. Furthermore, the apatites reflect the fractionated trends of LREEs relative to HREEs. Phoscorite apatites are enriched in Sr and show substitutions between Ca and Sr. Mica chemistry reflects the evolutionary trend of Fe2 + and Mg2 + in the phoscorite–carbonatite melt without Al substitution. Micas exhibit high values of Mg# in the phoscorite–carbonatite complex, but lower values in fenites. Via thermodynamic analysis, the early stability fields of magnetite–pyrrhotite–graphite–carbonate assemblages indicate that the Yonghwa phoscorite and carbonatite crystallized under conditions of 600 °C, 2 kbar, and XCO2 = 0.2. Afterward, melts underwent an evolution to the late stability fields of magnetite–pyrite–pyrrhotite–ilmenite assemblages. The δ13C and δ18O isotopic compositions of carbonates in the Yonghwa phoscorite–carbonatite complex are − 8.2‰ to − 3.4‰ and 6.6 to 11.0‰, respectively, and together with the sulfur isotope compositions of the sulfides (δ34S values of about 0.2‰ to 2.2‰) indicate a primary mantle source of the magmas. Phlogopites from the fenites yielded K–Ar ages of 193.4 ± 4.9 and 195.0 ± 5.1 Ma, which demarcate the timing of the cooling of the phoscorite–carbonatite intrusion, and indicate that the phoscorite–carbonatite may be related to a post-collisional magmatic regime. The discovery of this complex marks the first known occurrence in Korea, of Fe and Nb–REE mineralization related to phoscorite–carbonatite igneous activity.

Original languageEnglish
Pages (from-to)606-619
Number of pages14
JournalLithos
Volume262
DOIs
Publication statusPublished - 2016 Oct 1

Fingerprint

Apatites
Ferrosoferric Oxide
apatite
magnetite
Carbonates
carbonatite
melt
Crystallization
carbonate
Sulfur Isotopes
dolomite
olivine
substitution
crystallization
Substitution reactions
Bearings (structural)
Amphibole Asbestos
Wall rock
Silicate minerals
metabasite

Keywords

  • Fe mineralization
  • Fenitization
  • Korea
  • Phoscorite–carbonatite
  • Yonghwa

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications. / Seo, Jieun; Choi, Seon-Gyu; Park, Jung–Woo –W; Whattam, Scott A.; Kim, Dong Woo; Ryu, In–Chang –C; Oh, Chang Whan.

In: Lithos, Vol. 262, 01.10.2016, p. 606-619.

Research output: Contribution to journalArticle

Seo, Jieun ; Choi, Seon-Gyu ; Park, Jung–Woo –W ; Whattam, Scott A. ; Kim, Dong Woo ; Ryu, In–Chang –C ; Oh, Chang Whan. / Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications. In: Lithos. 2016 ; Vol. 262. pp. 606-619.
@article{6cde62a1e63041b78fce82e37ea44804,
title = "Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications",
abstract = "The Yonghwa phoscorite–carbonatite complex occurs as an isolated individual body with an inclined pipe shape within the Precambrian Gyeonggi Massif, South Korea. The phoscorite consists mainly of olivine, apatite, magnetite, carbonates, amphibole, and phlogopite, and can be subdivided into two types, olivine-rich and apatite-rich. The carbonatite is composed of calcite, Mg-rich dolomite, Fe-rich dolomite, magnetite, apatite, and/or siderite. Intensive fenitization occurred along the boundary between the complex and the wall rocks of leucocratic banded gneiss and garnet-bearing metabasite. The paragenetic sequences of the phoscorite–carbonatite complex demonstrate that the early crystallization of silicate minerals was followed by the crystallization of carbonates as the carbonatitic melt cooled. Magnetite occurs within the complex, and the carbonatites have Fe contents that are higher than typical ferrocarbonatites, due to the high magnetite contents. The rare earth elements (REEs) in the phoscorites and carbonatites are weakly fractionated and show enrichments of LREEs and Nb relative to HREEs. Furthermore, the apatites reflect the fractionated trends of LREEs relative to HREEs. Phoscorite apatites are enriched in Sr and show substitutions between Ca and Sr. Mica chemistry reflects the evolutionary trend of Fe2 + and Mg2 + in the phoscorite–carbonatite melt without Al substitution. Micas exhibit high values of Mg# in the phoscorite–carbonatite complex, but lower values in fenites. Via thermodynamic analysis, the early stability fields of magnetite–pyrrhotite–graphite–carbonate assemblages indicate that the Yonghwa phoscorite and carbonatite crystallized under conditions of 600 °C, 2 kbar, and XCO2 = 0.2. Afterward, melts underwent an evolution to the late stability fields of magnetite–pyrite–pyrrhotite–ilmenite assemblages. The δ13C and δ18O isotopic compositions of carbonates in the Yonghwa phoscorite–carbonatite complex are − 8.2‰ to − 3.4‰ and 6.6 to 11.0‰, respectively, and together with the sulfur isotope compositions of the sulfides (δ34S values of about 0.2‰ to 2.2‰) indicate a primary mantle source of the magmas. Phlogopites from the fenites yielded K–Ar ages of 193.4 ± 4.9 and 195.0 ± 5.1 Ma, which demarcate the timing of the cooling of the phoscorite–carbonatite intrusion, and indicate that the phoscorite–carbonatite may be related to a post-collisional magmatic regime. The discovery of this complex marks the first known occurrence in Korea, of Fe and Nb–REE mineralization related to phoscorite–carbonatite igneous activity.",
keywords = "Fe mineralization, Fenitization, Korea, Phoscorite–carbonatite, Yonghwa",
author = "Jieun Seo and Seon-Gyu Choi and Park, {Jung–Woo –W} and Whattam, {Scott A.} and Kim, {Dong Woo} and Ryu, {In–Chang –C} and Oh, {Chang Whan}",
year = "2016",
month = "10",
day = "1",
doi = "10.1016/j.lithos.2016.08.006",
language = "English",
volume = "262",
pages = "606--619",
journal = "Lithos",
issn = "0024-4937",
publisher = "Elsevier",

}

TY - JOUR

T1 - Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications

AU - Seo, Jieun

AU - Choi, Seon-Gyu

AU - Park, Jung–Woo –W

AU - Whattam, Scott A.

AU - Kim, Dong Woo

AU - Ryu, In–Chang –C

AU - Oh, Chang Whan

PY - 2016/10/1

Y1 - 2016/10/1

N2 - The Yonghwa phoscorite–carbonatite complex occurs as an isolated individual body with an inclined pipe shape within the Precambrian Gyeonggi Massif, South Korea. The phoscorite consists mainly of olivine, apatite, magnetite, carbonates, amphibole, and phlogopite, and can be subdivided into two types, olivine-rich and apatite-rich. The carbonatite is composed of calcite, Mg-rich dolomite, Fe-rich dolomite, magnetite, apatite, and/or siderite. Intensive fenitization occurred along the boundary between the complex and the wall rocks of leucocratic banded gneiss and garnet-bearing metabasite. The paragenetic sequences of the phoscorite–carbonatite complex demonstrate that the early crystallization of silicate minerals was followed by the crystallization of carbonates as the carbonatitic melt cooled. Magnetite occurs within the complex, and the carbonatites have Fe contents that are higher than typical ferrocarbonatites, due to the high magnetite contents. The rare earth elements (REEs) in the phoscorites and carbonatites are weakly fractionated and show enrichments of LREEs and Nb relative to HREEs. Furthermore, the apatites reflect the fractionated trends of LREEs relative to HREEs. Phoscorite apatites are enriched in Sr and show substitutions between Ca and Sr. Mica chemistry reflects the evolutionary trend of Fe2 + and Mg2 + in the phoscorite–carbonatite melt without Al substitution. Micas exhibit high values of Mg# in the phoscorite–carbonatite complex, but lower values in fenites. Via thermodynamic analysis, the early stability fields of magnetite–pyrrhotite–graphite–carbonate assemblages indicate that the Yonghwa phoscorite and carbonatite crystallized under conditions of 600 °C, 2 kbar, and XCO2 = 0.2. Afterward, melts underwent an evolution to the late stability fields of magnetite–pyrite–pyrrhotite–ilmenite assemblages. The δ13C and δ18O isotopic compositions of carbonates in the Yonghwa phoscorite–carbonatite complex are − 8.2‰ to − 3.4‰ and 6.6 to 11.0‰, respectively, and together with the sulfur isotope compositions of the sulfides (δ34S values of about 0.2‰ to 2.2‰) indicate a primary mantle source of the magmas. Phlogopites from the fenites yielded K–Ar ages of 193.4 ± 4.9 and 195.0 ± 5.1 Ma, which demarcate the timing of the cooling of the phoscorite–carbonatite intrusion, and indicate that the phoscorite–carbonatite may be related to a post-collisional magmatic regime. The discovery of this complex marks the first known occurrence in Korea, of Fe and Nb–REE mineralization related to phoscorite–carbonatite igneous activity.

AB - The Yonghwa phoscorite–carbonatite complex occurs as an isolated individual body with an inclined pipe shape within the Precambrian Gyeonggi Massif, South Korea. The phoscorite consists mainly of olivine, apatite, magnetite, carbonates, amphibole, and phlogopite, and can be subdivided into two types, olivine-rich and apatite-rich. The carbonatite is composed of calcite, Mg-rich dolomite, Fe-rich dolomite, magnetite, apatite, and/or siderite. Intensive fenitization occurred along the boundary between the complex and the wall rocks of leucocratic banded gneiss and garnet-bearing metabasite. The paragenetic sequences of the phoscorite–carbonatite complex demonstrate that the early crystallization of silicate minerals was followed by the crystallization of carbonates as the carbonatitic melt cooled. Magnetite occurs within the complex, and the carbonatites have Fe contents that are higher than typical ferrocarbonatites, due to the high magnetite contents. The rare earth elements (REEs) in the phoscorites and carbonatites are weakly fractionated and show enrichments of LREEs and Nb relative to HREEs. Furthermore, the apatites reflect the fractionated trends of LREEs relative to HREEs. Phoscorite apatites are enriched in Sr and show substitutions between Ca and Sr. Mica chemistry reflects the evolutionary trend of Fe2 + and Mg2 + in the phoscorite–carbonatite melt without Al substitution. Micas exhibit high values of Mg# in the phoscorite–carbonatite complex, but lower values in fenites. Via thermodynamic analysis, the early stability fields of magnetite–pyrrhotite–graphite–carbonate assemblages indicate that the Yonghwa phoscorite and carbonatite crystallized under conditions of 600 °C, 2 kbar, and XCO2 = 0.2. Afterward, melts underwent an evolution to the late stability fields of magnetite–pyrite–pyrrhotite–ilmenite assemblages. The δ13C and δ18O isotopic compositions of carbonates in the Yonghwa phoscorite–carbonatite complex are − 8.2‰ to − 3.4‰ and 6.6 to 11.0‰, respectively, and together with the sulfur isotope compositions of the sulfides (δ34S values of about 0.2‰ to 2.2‰) indicate a primary mantle source of the magmas. Phlogopites from the fenites yielded K–Ar ages of 193.4 ± 4.9 and 195.0 ± 5.1 Ma, which demarcate the timing of the cooling of the phoscorite–carbonatite intrusion, and indicate that the phoscorite–carbonatite may be related to a post-collisional magmatic regime. The discovery of this complex marks the first known occurrence in Korea, of Fe and Nb–REE mineralization related to phoscorite–carbonatite igneous activity.

KW - Fe mineralization

KW - Fenitization

KW - Korea

KW - Phoscorite–carbonatite

KW - Yonghwa

UR - http://www.scopus.com/inward/record.url?scp=84982206023&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84982206023&partnerID=8YFLogxK

U2 - 10.1016/j.lithos.2016.08.006

DO - 10.1016/j.lithos.2016.08.006

M3 - Article

VL - 262

SP - 606

EP - 619

JO - Lithos

JF - Lithos

SN - 0024-4937

ER -