TY - JOUR
T1 - Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications
AU - Seo, Jieun
AU - Choi, Seon–Gyu –G
AU - Park, Jung–Woo –W
AU - Whattam, Scott
AU - Kim, Dong Woo
AU - Ryu, In–Chang –C
AU - Oh, Chang Whan
N1 - Funding Information:
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy ( 20152510101890 ) and Basic Science Research Program through the National Research Foundation of Korea ( NRF ) funded by the Ministry of Science, ICT and Future Planning ( 2012R1A1A2005723 ). We are deeply indebted to A.R. Chakhmouradian and anonymous reviewer for their helpful comments. And, our thanks also go to A.C. Kerr for his editorial handling and comments of the manuscript.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - The Yonghwa phoscorite–carbonatite complex occurs as an isolated individual body with an inclined pipe shape within the Precambrian Gyeonggi Massif, South Korea. The phoscorite consists mainly of olivine, apatite, magnetite, carbonates, amphibole, and phlogopite, and can be subdivided into two types, olivine-rich and apatite-rich. The carbonatite is composed of calcite, Mg-rich dolomite, Fe-rich dolomite, magnetite, apatite, and/or siderite. Intensive fenitization occurred along the boundary between the complex and the wall rocks of leucocratic banded gneiss and garnet-bearing metabasite. The paragenetic sequences of the phoscorite–carbonatite complex demonstrate that the early crystallization of silicate minerals was followed by the crystallization of carbonates as the carbonatitic melt cooled. Magnetite occurs within the complex, and the carbonatites have Fe contents that are higher than typical ferrocarbonatites, due to the high magnetite contents. The rare earth elements (REEs) in the phoscorites and carbonatites are weakly fractionated and show enrichments of LREEs and Nb relative to HREEs. Furthermore, the apatites reflect the fractionated trends of LREEs relative to HREEs. Phoscorite apatites are enriched in Sr and show substitutions between Ca and Sr. Mica chemistry reflects the evolutionary trend of Fe2 + and Mg2 + in the phoscorite–carbonatite melt without Al substitution. Micas exhibit high values of Mg# in the phoscorite–carbonatite complex, but lower values in fenites. Via thermodynamic analysis, the early stability fields of magnetite–pyrrhotite–graphite–carbonate assemblages indicate that the Yonghwa phoscorite and carbonatite crystallized under conditions of 600 °C, 2 kbar, and XCO2 = 0.2. Afterward, melts underwent an evolution to the late stability fields of magnetite–pyrite–pyrrhotite–ilmenite assemblages. The δ13C and δ18O isotopic compositions of carbonates in the Yonghwa phoscorite–carbonatite complex are − 8.2‰ to − 3.4‰ and 6.6 to 11.0‰, respectively, and together with the sulfur isotope compositions of the sulfides (δ34S values of about 0.2‰ to 2.2‰) indicate a primary mantle source of the magmas. Phlogopites from the fenites yielded K–Ar ages of 193.4 ± 4.9 and 195.0 ± 5.1 Ma, which demarcate the timing of the cooling of the phoscorite–carbonatite intrusion, and indicate that the phoscorite–carbonatite may be related to a post-collisional magmatic regime. The discovery of this complex marks the first known occurrence in Korea, of Fe and Nb–REE mineralization related to phoscorite–carbonatite igneous activity.
AB - The Yonghwa phoscorite–carbonatite complex occurs as an isolated individual body with an inclined pipe shape within the Precambrian Gyeonggi Massif, South Korea. The phoscorite consists mainly of olivine, apatite, magnetite, carbonates, amphibole, and phlogopite, and can be subdivided into two types, olivine-rich and apatite-rich. The carbonatite is composed of calcite, Mg-rich dolomite, Fe-rich dolomite, magnetite, apatite, and/or siderite. Intensive fenitization occurred along the boundary between the complex and the wall rocks of leucocratic banded gneiss and garnet-bearing metabasite. The paragenetic sequences of the phoscorite–carbonatite complex demonstrate that the early crystallization of silicate minerals was followed by the crystallization of carbonates as the carbonatitic melt cooled. Magnetite occurs within the complex, and the carbonatites have Fe contents that are higher than typical ferrocarbonatites, due to the high magnetite contents. The rare earth elements (REEs) in the phoscorites and carbonatites are weakly fractionated and show enrichments of LREEs and Nb relative to HREEs. Furthermore, the apatites reflect the fractionated trends of LREEs relative to HREEs. Phoscorite apatites are enriched in Sr and show substitutions between Ca and Sr. Mica chemistry reflects the evolutionary trend of Fe2 + and Mg2 + in the phoscorite–carbonatite melt without Al substitution. Micas exhibit high values of Mg# in the phoscorite–carbonatite complex, but lower values in fenites. Via thermodynamic analysis, the early stability fields of magnetite–pyrrhotite–graphite–carbonate assemblages indicate that the Yonghwa phoscorite and carbonatite crystallized under conditions of 600 °C, 2 kbar, and XCO2 = 0.2. Afterward, melts underwent an evolution to the late stability fields of magnetite–pyrite–pyrrhotite–ilmenite assemblages. The δ13C and δ18O isotopic compositions of carbonates in the Yonghwa phoscorite–carbonatite complex are − 8.2‰ to − 3.4‰ and 6.6 to 11.0‰, respectively, and together with the sulfur isotope compositions of the sulfides (δ34S values of about 0.2‰ to 2.2‰) indicate a primary mantle source of the magmas. Phlogopites from the fenites yielded K–Ar ages of 193.4 ± 4.9 and 195.0 ± 5.1 Ma, which demarcate the timing of the cooling of the phoscorite–carbonatite intrusion, and indicate that the phoscorite–carbonatite may be related to a post-collisional magmatic regime. The discovery of this complex marks the first known occurrence in Korea, of Fe and Nb–REE mineralization related to phoscorite–carbonatite igneous activity.
KW - Fe mineralization
KW - Fenitization
KW - Korea
KW - Phoscorite–carbonatite
KW - Yonghwa
UR - http://www.scopus.com/inward/record.url?scp=84982206023&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982206023&partnerID=8YFLogxK
U2 - 10.1016/j.lithos.2016.08.006
DO - 10.1016/j.lithos.2016.08.006
M3 - Article
AN - SCOPUS:84982206023
SN - 0024-4937
VL - 262
SP - 606
EP - 619
JO - Lithos
JF - Lithos
ER -