TY - GEN
T1 - Geotechnical characteristics of polystyrene treated sand
AU - Yoon, Boyeong
AU - Kim, Jang un
AU - Lee, Jihwan
AU - Lee, Woojin
N1 - Funding Information:
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (2018R1A2B6000973) .
Publisher Copyright:
© The Authors, published by EDP Sciences.
PY - 2019/6/25
Y1 - 2019/6/25
N2 - Many polymeric materials are recently used in geotechnical practice for enhancing the engineering properties of soils. Among the various polymers, this study aims at investigating the geotechnical properties of silica sand coated with polystyrene(PS), which is rarely studied in geotechnical engineering. The polystyrene coated sand was prepared by polymerizing styrene monomer on the surface of silanized sand with median diameter of 0.467 mm. Testing specimens were prepared at 3 different initial relative densities (30, 50 and 70%) by air pluviation. Comprehensive experiments, including one-dimensional compression test with bender elements and triaxial test, were performed to observe the change in geotechnical properties due to the coating of PS on sand surface. The results demonstrate that the adsorbed polymer plays different roles according to strain levels. At very small strain, the polymer on the sand surface may increase the interparticle contact area by applying additional adhesion force between soil particles, leading to an increase in Gmax. However, with an increase in strain level, the polymer will act as the lubricant between sand particles; therefore, the coated sand can show increased compression index and decreased friction angle.
AB - Many polymeric materials are recently used in geotechnical practice for enhancing the engineering properties of soils. Among the various polymers, this study aims at investigating the geotechnical properties of silica sand coated with polystyrene(PS), which is rarely studied in geotechnical engineering. The polystyrene coated sand was prepared by polymerizing styrene monomer on the surface of silanized sand with median diameter of 0.467 mm. Testing specimens were prepared at 3 different initial relative densities (30, 50 and 70%) by air pluviation. Comprehensive experiments, including one-dimensional compression test with bender elements and triaxial test, were performed to observe the change in geotechnical properties due to the coating of PS on sand surface. The results demonstrate that the adsorbed polymer plays different roles according to strain levels. At very small strain, the polymer on the sand surface may increase the interparticle contact area by applying additional adhesion force between soil particles, leading to an increase in Gmax. However, with an increase in strain level, the polymer will act as the lubricant between sand particles; therefore, the coated sand can show increased compression index and decreased friction angle.
UR - http://www.scopus.com/inward/record.url?scp=85069674839&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/20199211015
DO - 10.1051/e3sconf/20199211015
M3 - Conference contribution
AN - SCOPUS:85069674839
T3 - E3S Web of Conferences
BT - 7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019
A2 - Ibraim, Erdin
A2 - Tarantino, Alessandro
PB - EDP Sciences
T2 - 7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019
Y2 - 26 June 2019 through 28 June 2019
ER -