Graph Theoretical Analysis of Cortical Networks based on Conscious Experience

Minji Lee, Benjamin Baird, Olivia Gosseries, Jaakko O. Nieminen, Melanie Boly, Giulio Tononi, Seong Whan Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The aim of the study was to investigate differences in cortical networks based on the state of consciousness. Five subjects performed a serial-awakening paradigm with electroencephalography (EEG) recordings. We considered four states of consciousness: (1) non-rapid eye movement (NREM) sleep with no conscious experience, (2) NREM sleep with conscious experience, (3) rapid eye movement (REM) sleep with conscious experience, and (4) wakefulness. We applied graph theoretical analysis to explore the cortical connectivity and network properties in five frequency bands. Connectivity between EEG channels was evaluated with the weighted phase lag index (wPLI). The characteristic path length, transitivity, and clustering coefficient were computed to evaluate functional integration and segregation of the associated brain network. There were no significant differences in wPLI among the four states of consciousness. In the beta band, functional integration in wakefulness was higher than in NREM sleep. Regarding functional segregation, in the theta band, transitivity and clustering coefficient in NREM sleep with no conscious experience were stronger than in wakefulness or REM sleep, but clustering in the beta band showed an opposite effect. The observed differences may be related to cortical bistability and add to previously observed neural correlates of consciousness.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3373-3376
Number of pages4
ISBN (Electronic)9781538613115
DOIs
Publication statusPublished - 2019 Jul
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 2019 Jul 232019 Jul 27

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
CountryGermany
CityBerlin
Period19/7/2319/7/27

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Graph Theoretical Analysis of Cortical Networks based on Conscious Experience'. Together they form a unique fingerprint.

Cite this