Groupwise registration with sharp mean

Guorong Wu, Hongjun Jia, Qian Wang, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Groupwise registration has received more and more attention in the area of medical image analysis, due to its importance in analysis of population data. One popular way for groupwise registration is to alternatively estimate the group mean image and register all subject images to the estimated group mean. However, for achieving better registration performance, it is important to always keep the sharpness of the group mean image during the registration, which has not been well investigated yet in the literature. To achieve this, we propose to treat each aligned subject, as well as its anatomical regions, differently when constructing the group mean image. Specifically, we propose a new objective function to generalize the conventional groupwise registration method by using a dynamic weighting strategy to weight adaptively across subjects and spatial regions, to construct a sharp group mean image in each stage of registration. By integrating this strategy into diffeomorphic demons algorithm, the performance of our groupwise registration can be significantly improved, compared to the conventional groupwise registration method that starts with a fuzzy group mean image.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pages570-577
Number of pages8
Volume6362 LNCS
EditionPART 2
DOIs
Publication statusPublished - 2010 Nov 22
Externally publishedYes
Event13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010 - Beijing, China
Duration: 2010 Sep 202010 Sep 24

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume6362 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Other

Other13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010
CountryChina
CityBeijing
Period10/9/2010/9/24

Fingerprint

Image analysis
Registration
Fuzzy Group
Medical Image Analysis
Sharpness
Weighting
Objective function
Generalise
Estimate

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

Cite this

Wu, G., Jia, H., Wang, Q., & Shen, D. (2010). Groupwise registration with sharp mean. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (PART 2 ed., Vol. 6362 LNCS, pp. 570-577). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 6362 LNCS, No. PART 2). https://doi.org/10.1007/978-3-642-15745-5_70

Groupwise registration with sharp mean. / Wu, Guorong; Jia, Hongjun; Wang, Qian; Shen, Dinggang.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 6362 LNCS PART 2. ed. 2010. p. 570-577 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 6362 LNCS, No. PART 2).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Wu, G, Jia, H, Wang, Q & Shen, D 2010, Groupwise registration with sharp mean. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 2 edn, vol. 6362 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), no. PART 2, vol. 6362 LNCS, pp. 570-577, 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010, Beijing, China, 10/9/20. https://doi.org/10.1007/978-3-642-15745-5_70
Wu G, Jia H, Wang Q, Shen D. Groupwise registration with sharp mean. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 2 ed. Vol. 6362 LNCS. 2010. p. 570-577. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); PART 2). https://doi.org/10.1007/978-3-642-15745-5_70
Wu, Guorong ; Jia, Hongjun ; Wang, Qian ; Shen, Dinggang. / Groupwise registration with sharp mean. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 6362 LNCS PART 2. ed. 2010. pp. 570-577 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); PART 2).
@inproceedings{3726ac40c2c8488db9b29488d0a5b355,
title = "Groupwise registration with sharp mean",
abstract = "Groupwise registration has received more and more attention in the area of medical image analysis, due to its importance in analysis of population data. One popular way for groupwise registration is to alternatively estimate the group mean image and register all subject images to the estimated group mean. However, for achieving better registration performance, it is important to always keep the sharpness of the group mean image during the registration, which has not been well investigated yet in the literature. To achieve this, we propose to treat each aligned subject, as well as its anatomical regions, differently when constructing the group mean image. Specifically, we propose a new objective function to generalize the conventional groupwise registration method by using a dynamic weighting strategy to weight adaptively across subjects and spatial regions, to construct a sharp group mean image in each stage of registration. By integrating this strategy into diffeomorphic demons algorithm, the performance of our groupwise registration can be significantly improved, compared to the conventional groupwise registration method that starts with a fuzzy group mean image.",
author = "Guorong Wu and Hongjun Jia and Qian Wang and Dinggang Shen",
year = "2010",
month = "11",
day = "22",
doi = "10.1007/978-3-642-15745-5_70",
language = "English",
isbn = "3642157440",
volume = "6362 LNCS",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
number = "PART 2",
pages = "570--577",
booktitle = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
edition = "PART 2",

}

TY - GEN

T1 - Groupwise registration with sharp mean

AU - Wu, Guorong

AU - Jia, Hongjun

AU - Wang, Qian

AU - Shen, Dinggang

PY - 2010/11/22

Y1 - 2010/11/22

N2 - Groupwise registration has received more and more attention in the area of medical image analysis, due to its importance in analysis of population data. One popular way for groupwise registration is to alternatively estimate the group mean image and register all subject images to the estimated group mean. However, for achieving better registration performance, it is important to always keep the sharpness of the group mean image during the registration, which has not been well investigated yet in the literature. To achieve this, we propose to treat each aligned subject, as well as its anatomical regions, differently when constructing the group mean image. Specifically, we propose a new objective function to generalize the conventional groupwise registration method by using a dynamic weighting strategy to weight adaptively across subjects and spatial regions, to construct a sharp group mean image in each stage of registration. By integrating this strategy into diffeomorphic demons algorithm, the performance of our groupwise registration can be significantly improved, compared to the conventional groupwise registration method that starts with a fuzzy group mean image.

AB - Groupwise registration has received more and more attention in the area of medical image analysis, due to its importance in analysis of population data. One popular way for groupwise registration is to alternatively estimate the group mean image and register all subject images to the estimated group mean. However, for achieving better registration performance, it is important to always keep the sharpness of the group mean image during the registration, which has not been well investigated yet in the literature. To achieve this, we propose to treat each aligned subject, as well as its anatomical regions, differently when constructing the group mean image. Specifically, we propose a new objective function to generalize the conventional groupwise registration method by using a dynamic weighting strategy to weight adaptively across subjects and spatial regions, to construct a sharp group mean image in each stage of registration. By integrating this strategy into diffeomorphic demons algorithm, the performance of our groupwise registration can be significantly improved, compared to the conventional groupwise registration method that starts with a fuzzy group mean image.

UR - http://www.scopus.com/inward/record.url?scp=78349252669&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78349252669&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-15745-5_70

DO - 10.1007/978-3-642-15745-5_70

M3 - Conference contribution

SN - 3642157440

SN - 9783642157448

VL - 6362 LNCS

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 570

EP - 577

BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

ER -