TY - JOUR
T1 - Handover Management of Net-Drones for Future Internet Platforms
AU - Park, Kyung Nam
AU - Kang, Jin Hyeok
AU - Cho, Byeong Moon
AU - Park, Kyung Joon
AU - Kim, Hwangnam
PY - 2016
Y1 - 2016
N2 - The advent of the Internet of things (IoT) is changing the way how we interact with the physical world. However, the current Internet suffers from exponential increase in bandwidth demand. In order to resolve the bandwidth issue, we can consider aerial networks by unmanned aerial vehicles (UAV) or the so-called drones for establishing a three-dimensional mobile network in an ad hoc manner. By deploying a network from the sky, we can use the otherwise idle wireless medium and high mobility free from ground obstacles. Aerial networks are especially effective for supporting the temporary surge of population as well as disaster areas because building an additional network infrastructure requires extensive time. In this paper, we propose an efficient handover mechanism for aerial networks in the three-dimensional space, which significantly differs from the conventional two-dimensional schemes. The proposed scheme adjusts the height of a drone and the distance between the drones. To this end, we use the seamless handover success probability and the false handover initiation probability in order to evaluate the optimal coverage decision algorithm. To the best of our knowledge, the proposed scheme is the first attempt for resolving handover of net-drones in the three-dimensional space.
AB - The advent of the Internet of things (IoT) is changing the way how we interact with the physical world. However, the current Internet suffers from exponential increase in bandwidth demand. In order to resolve the bandwidth issue, we can consider aerial networks by unmanned aerial vehicles (UAV) or the so-called drones for establishing a three-dimensional mobile network in an ad hoc manner. By deploying a network from the sky, we can use the otherwise idle wireless medium and high mobility free from ground obstacles. Aerial networks are especially effective for supporting the temporary surge of population as well as disaster areas because building an additional network infrastructure requires extensive time. In this paper, we propose an efficient handover mechanism for aerial networks in the three-dimensional space, which significantly differs from the conventional two-dimensional schemes. The proposed scheme adjusts the height of a drone and the distance between the drones. To this end, we use the seamless handover success probability and the false handover initiation probability in order to evaluate the optimal coverage decision algorithm. To the best of our knowledge, the proposed scheme is the first attempt for resolving handover of net-drones in the three-dimensional space.
UR - http://www.scopus.com/inward/record.url?scp=84971449575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971449575&partnerID=8YFLogxK
U2 - 10.1155/2016/5760245
DO - 10.1155/2016/5760245
M3 - Article
AN - SCOPUS:84971449575
VL - 2016
JO - International Journal of Distributed Sensor Networks
JF - International Journal of Distributed Sensor Networks
SN - 1550-1329
M1 - 5760245
ER -