Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks

the UNC/UMN Baby Connectome Project Consortium

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Citations (Scopus)

Abstract

Increasing multi-site infant neuroimaging datasets are facilitating the research on understanding early brain development with larger sample size and bigger statistical power. However, a joint analysis of cortical properties (e.g., cortical thickness) is unavoidably facing the problem of non-biological variance introduced by differences in MRI scanners. To address this issue, in this paper, we propose cycle-consistent adversarial networks based on spherical cortical surface to harmonize cortical thickness maps between different scanners. We combine the spherical U-Net and CycleGAN to construct a surface-to-surface CycleGAN (S2SGAN). Specifically, we model the harmonization from scanner X to scanner Y as a surface-to-surface translation task. The first goal of harmonization is to learn a mapping X→Y such that the distribution of surface thickness maps from GX(X) is indistinguishable from Y. Since this mapping is highly under-constrained, with the second goal of harmonization to preserve individual differences, we utilize the inverse mapping Gy:Y→X and the cycle consistency loss to enforce GY (GX(X)) ≈ X (and vice versa). Furthermore, we incorporate the correlation coefficient loss to guarantee the structure consistency between the original and the generated surface thickness maps. Quantitative evaluation on both synthesized and real infant cortical data demonstrates the superior ability of our method in removing unwanted scanner effects and preserving individual differences simultaneously, compared to the state-of-the-art methods.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages475-483
Number of pages9
ISBN (Print)9783030322502
DOIs
Publication statusPublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 2019 Oct 132019 Oct 17

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11767 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period19/10/1319/10/17

Keywords

  • CycleGAN
  • Harmonization
  • Spherical U-Net

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks'. Together they form a unique fingerprint.

Cite this