TY - JOUR
T1 - Hierarchically Well-Developed Porous Graphene Nanofibers Comprising N-Doped Graphitic C-Coated Cobalt Oxide Hollow Nanospheres As Anodes for High-Rate Li-Ion Batteries
AU - Lee, Jae Seob
AU - Jo, Min Su
AU - Saroha, Rakesh
AU - Jung, Dae Soo
AU - Seon, Young Hoe
AU - Lee, Jun Su
AU - Kang, Yun Chan
AU - Kang, Dong Won
AU - Cho, Jung Sang
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF). The grant was funded by the government of Korea (MSIP) (NRF‐2018R1A4A1024691, NRF‐2017M1A2A2087577, and NRF‐2018R1D1A3B07042514).
Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Hierarchically well-developed porous graphene nanofibers comprising N-doped graphitic C (NGC)-coated cobalt oxide hollow nanospheres are introduced as anodes for high-rate Li-ion batteries. For this, three strategies, comprising the Kirkendall effect, metal–organic frameworks, and compositing with highly conductive C, are applied to the 1D architecture. In particular, NGC layers are coated on cobalt oxide hollow nanospheres as a primary transport path of electrons followed by graphene-nanonetwork-constituting nanofibers as a continuous and secondary electron transport path. Superior cycling performance is achieved, as the unique nanostructure delivers a discharge capacity of 823 mAh g−1 after 500 cycles at 3.0 A g−1 with a low decay rate of 0.092% per cycle. The rate capability is also noteworthy as the structure exhibits high discharge capacities of 1035, 929, 847, 787, 747, 703, 672, 650, 625, 610, 570, 537, 475, 422, 294, and 222 mAh g−1 at current densities of 0.5, 1.5, 3, 5, 7, 10, 12, 15, 18, 20, 25, 30, 40, 50, 80, and 100 A g−1, respectively. In view of the highly efficient Li+ ion/electron diffusion and high structural stability, the present nanostructuring strategy has a huge potential in opening new frontiers for high-rate and long-lived stable energy storage systems.
AB - Hierarchically well-developed porous graphene nanofibers comprising N-doped graphitic C (NGC)-coated cobalt oxide hollow nanospheres are introduced as anodes for high-rate Li-ion batteries. For this, three strategies, comprising the Kirkendall effect, metal–organic frameworks, and compositing with highly conductive C, are applied to the 1D architecture. In particular, NGC layers are coated on cobalt oxide hollow nanospheres as a primary transport path of electrons followed by graphene-nanonetwork-constituting nanofibers as a continuous and secondary electron transport path. Superior cycling performance is achieved, as the unique nanostructure delivers a discharge capacity of 823 mAh g−1 after 500 cycles at 3.0 A g−1 with a low decay rate of 0.092% per cycle. The rate capability is also noteworthy as the structure exhibits high discharge capacities of 1035, 929, 847, 787, 747, 703, 672, 650, 625, 610, 570, 537, 475, 422, 294, and 222 mAh g−1 at current densities of 0.5, 1.5, 3, 5, 7, 10, 12, 15, 18, 20, 25, 30, 40, 50, 80, and 100 A g−1, respectively. In view of the highly efficient Li+ ion/electron diffusion and high structural stability, the present nanostructuring strategy has a huge potential in opening new frontiers for high-rate and long-lived stable energy storage systems.
KW - anode materials
KW - graphene
KW - lithium-ion batteries
KW - metal–organic frameworks
KW - transition metal oxide
UR - http://www.scopus.com/inward/record.url?scp=85087310784&partnerID=8YFLogxK
U2 - 10.1002/smll.202002213
DO - 10.1002/smll.202002213
M3 - Article
C2 - 32614514
AN - SCOPUS:85087310784
SN - 1613-6810
VL - 16
JO - Small
JF - Small
IS - 32
M1 - 2002213
ER -