TY - JOUR
T1 - High performance CO2-perm-selective SSZ-13 membranes
T2 - Elucidation of the link between membrane material and module properties
AU - Lee, Minseong
AU - Jeong, Yanghwan
AU - Hong, Sungwon
AU - Choi, Jungkyu
N1 - Funding Information:
This work was financially supported by the Korea CCS R&D Center (KCRC) ( 2014M1A8A1049309 ), by the International Research & Development Program ( 2016K1A3A1A48954031 ), and by the Super Ultra Low Energy and Emission Vehicle (SULEEV) Center ( 2016R1A5A1009592 ) through National Research Foundation (NRF) of Korea . All three grants were funded by the Korea government ( Ministry of Science and ICT ). Some SEM characterizations were conducted at KBSI (Seoul Center).
Funding Information:
This work was financially supported by the Korea CCS R&D Center (KCRC) (2014M1A8A1049309), by the International Research & Development Program (2016K1A3A1A48954031), and by the Super Ultra Low Energy and Emission Vehicle (SULEEV) Center (2016R1A5A1009592) through National Research Foundation (NRF) of Korea. All three grants were funded by the Korea government (Ministry of Science and ICT). Some SEM characterizations were conducted at KBSI (Seoul Center).
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Standard oil synthetic zeolite-13 (SSZ-13) membranes separate CO2 (0.33 nm) from larger molecules (N2 (0.364 nm) and CH4 (0.38 nm)) via micropore (0.37 × 0.42 nm2) size differentiation and function well in humid CO2-containing feeds, thus allowing effective carbon capture. However, their separation performance in a module configuration is not fully understood. Here, we changed the membrane supports from discs to tubes and investigated the differences in CO2 perm-selectivities. The resulting hydrophobic SSZ-13 membranes had comparable and high separation factors (~20–30 for CO2/N2 and ~130–200 for CO2/CH4), while CO2 permeance increased under wet conditions from ~1.8 × 10−8 mol∙m−2 s−1∙Pa−1 (disc) to ~3.0–4.0 × 10−7 mol∙m−2 s−1∙Pa−1 (tube). In addition, a long term stability test confirms the robustness of the SSZ-13 membrane under wet conditions. Furthermore, we varied the operating conditions systematically to evaluate the membrane module properties (recovery and purity) in two sizes of permeation cells or single tube modules. Considering the module performance efficiency, approximately, 76% and 59% CO2 recovery and purity, respectively, were achieved using the tube-supported membrane with respect to a wet CO2/N2 mixture (mol:mol = 15:85; simulated for flue gas from coal-fired power plants). In addition, we derived a relationship between mass transport (related to CO2 molar flux) and feed gas flow properties. Specifically, mass transfer (represented by the Sherwood number) in the feed stream and CO2 molar flux across the membrane were related to the Reynolds number (a representative parameter of the feed stream). Finally, the Reynolds number was complemented with total feed pressure and CO2 feed flow rate; the combined parameter described the module performance (CO2 recovery and purity) well.
AB - Standard oil synthetic zeolite-13 (SSZ-13) membranes separate CO2 (0.33 nm) from larger molecules (N2 (0.364 nm) and CH4 (0.38 nm)) via micropore (0.37 × 0.42 nm2) size differentiation and function well in humid CO2-containing feeds, thus allowing effective carbon capture. However, their separation performance in a module configuration is not fully understood. Here, we changed the membrane supports from discs to tubes and investigated the differences in CO2 perm-selectivities. The resulting hydrophobic SSZ-13 membranes had comparable and high separation factors (~20–30 for CO2/N2 and ~130–200 for CO2/CH4), while CO2 permeance increased under wet conditions from ~1.8 × 10−8 mol∙m−2 s−1∙Pa−1 (disc) to ~3.0–4.0 × 10−7 mol∙m−2 s−1∙Pa−1 (tube). In addition, a long term stability test confirms the robustness of the SSZ-13 membrane under wet conditions. Furthermore, we varied the operating conditions systematically to evaluate the membrane module properties (recovery and purity) in two sizes of permeation cells or single tube modules. Considering the module performance efficiency, approximately, 76% and 59% CO2 recovery and purity, respectively, were achieved using the tube-supported membrane with respect to a wet CO2/N2 mixture (mol:mol = 15:85; simulated for flue gas from coal-fired power plants). In addition, we derived a relationship between mass transport (related to CO2 molar flux) and feed gas flow properties. Specifically, mass transfer (represented by the Sherwood number) in the feed stream and CO2 molar flux across the membrane were related to the Reynolds number (a representative parameter of the feed stream). Finally, the Reynolds number was complemented with total feed pressure and CO2 feed flow rate; the combined parameter described the module performance (CO2 recovery and purity) well.
KW - Carbon capture
KW - Module separation performance
KW - SSZ-13 zeolite
KW - Single tube module
KW - Zeolite membrane
UR - http://www.scopus.com/inward/record.url?scp=85086592801&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2020.118390
DO - 10.1016/j.memsci.2020.118390
M3 - Article
AN - SCOPUS:85086592801
SN - 0376-7388
VL - 611
JO - Jornal of Membrane Science
JF - Jornal of Membrane Science
M1 - 118390
ER -