High-Performance Near-Infrared-Selective Thin Film Organic Photodiode Based on a Molecular Approach Targeted to Ideal Semiconductor Junctions

Seongwon Yoon, Hwa Sook Ryu, Jae Un Ha, Mingyun Kang, Thanh Luan Nguyen, Han Young Woo, Dae Sung Chung

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

A molecular approach to achieve wide linear dynamic range (LDR) and near-infrared (NIR)-selective thin film organic photodiodes (OPDs) with high detectivity is reported. Comparative studies based on two NIR-selective polymers are systematically investigated: the commercially available poly[(4,4′-bis(2-ethylhexyl)cyclopenta[2,1-b:3,4-b′]dithiophene)-alt-(benzo[c][1,2,5]thiadiazole)] (PCPDTBT) and the synthesized poly[(4,4′-(bis(hexyldecylsulfanyl)methylene)cyclopenta[2,1-b:3,4-b′]-dithiophene)-alt-(benzo[c][1,2,5]thiadiazole)] (PCPDTSBT). The introduction of sp2-hybridized side chains in the PCPDTSBT structure can improve chain planarity and thus intermolecular interactions, as confirmed by Raman spectroscopy and grazing incidence X-ray diffraction studies. The favorable crystalline orientation of PCPDTSBT leads to enhanced photocurrent and suppressed noise current, compared to that of PCPDTBT, followed by a sharp increase in the specific detectivity of PCPDTSBT-based NIR OPDs by 1.54 × 1012 Jones. The physics behind PCPDTSBT is analyzed employing optical simulation, temperature-dependent junction analyses, and Mott-Schottky analysis. Furthermore, it is found that PCPDTSBT possesses an exceptional nonsaturation photocurrent, which leads to a wide LDR of 128 dB. This study shows the possibility of realizing thin film NIR-selective OPDs using synthetic approaches.

Original languageEnglish
Pages (from-to)5647-5653
Number of pages7
JournalJournal of Physical Chemistry Letters
Volume10
Issue number18
DOIs
Publication statusPublished - 2019 Sept 19

ASJC Scopus subject areas

  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'High-Performance Near-Infrared-Selective Thin Film Organic Photodiode Based on a Molecular Approach Targeted to Ideal Semiconductor Junctions'. Together they form a unique fingerprint.

Cite this