Highly Bright and Photostable Li(Gd,Y)F4:Yb,Er/LiGdF4 Core/Shell Upconversion Nanophosphors for Bioimaging Applications

Jeehae Shin, Youngsun Kim, Jiyeon Lee, Sehoon Kim, Ho Seong Jang

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Intense green-emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green-emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6% under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as-synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK-MEL-2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal-to-noise ratio are obtained. Furthermore, sentinel-lymph-node imaging is successfully conducted with the PAA-capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.

Original languageEnglish
Article number1600183
JournalParticle and Particle Systems Characterization
Volume34
Issue number1
DOIs
Publication statusPublished - 2017 Jan 1
Externally publishedYes

Fingerprint

Luminescence
Imaging techniques
carbopol 940
luminescence
Infrared radiation
Infrared lasers
Quantum yield
Acrylics
Signal to noise ratio
lymphatic system
acrylic acid
Lighting
Irradiation
cells
infrared lasers
Acids
signal to noise ratios
illumination
irradiation
excitation

Keywords

  • lanthanide doping
  • luminescence
  • lymph-node imaging
  • nanophosphors
  • upconversion

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Cite this

Highly Bright and Photostable Li(Gd,Y)F4:Yb,Er/LiGdF4 Core/Shell Upconversion Nanophosphors for Bioimaging Applications. / Shin, Jeehae; Kim, Youngsun; Lee, Jiyeon; Kim, Sehoon; Jang, Ho Seong.

In: Particle and Particle Systems Characterization, Vol. 34, No. 1, 1600183, 01.01.2017.

Research output: Contribution to journalArticle

@article{c514db9fac22416d9d997b351309f81e,
title = "Highly Bright and Photostable Li(Gd,Y)F4:Yb,Er/LiGdF4 Core/Shell Upconversion Nanophosphors for Bioimaging Applications",
abstract = "Intense green-emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green-emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6{\%} under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as-synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK-MEL-2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal-to-noise ratio are obtained. Furthermore, sentinel-lymph-node imaging is successfully conducted with the PAA-capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.",
keywords = "lanthanide doping, luminescence, lymph-node imaging, nanophosphors, upconversion",
author = "Jeehae Shin and Youngsun Kim and Jiyeon Lee and Sehoon Kim and Jang, {Ho Seong}",
year = "2017",
month = "1",
day = "1",
doi = "10.1002/ppsc.201600183",
language = "English",
volume = "34",
journal = "Particle and Particle Systems Characterization",
issn = "0934-0866",
publisher = "Wiley-VCH Verlag",
number = "1",

}

TY - JOUR

T1 - Highly Bright and Photostable Li(Gd,Y)F4:Yb,Er/LiGdF4 Core/Shell Upconversion Nanophosphors for Bioimaging Applications

AU - Shin, Jeehae

AU - Kim, Youngsun

AU - Lee, Jiyeon

AU - Kim, Sehoon

AU - Jang, Ho Seong

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Intense green-emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green-emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6% under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as-synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK-MEL-2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal-to-noise ratio are obtained. Furthermore, sentinel-lymph-node imaging is successfully conducted with the PAA-capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.

AB - Intense green-emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green-emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6% under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as-synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK-MEL-2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal-to-noise ratio are obtained. Furthermore, sentinel-lymph-node imaging is successfully conducted with the PAA-capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.

KW - lanthanide doping

KW - luminescence

KW - lymph-node imaging

KW - nanophosphors

KW - upconversion

UR - http://www.scopus.com/inward/record.url?scp=84991671986&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84991671986&partnerID=8YFLogxK

U2 - 10.1002/ppsc.201600183

DO - 10.1002/ppsc.201600183

M3 - Article

AN - SCOPUS:84991671986

VL - 34

JO - Particle and Particle Systems Characterization

JF - Particle and Particle Systems Characterization

SN - 0934-0866

IS - 1

M1 - 1600183

ER -