Highly efficient and highly stable terpolymer-based all-polymer solar cells with broad complementary absorption and robust morphology

Aesun Kim, Chang Geun Park, Su Hong Park, Hyung Jong Kim, Suna Choi, Young Un Kim, Choel Hun Jeong, Weon Sik Chae, Min Ju Cho, Dong Hoon Choi

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

A novel conjugated terpolymer referred to as Ter-3MTTPD was successfully synthesized using 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene as a donor and methyl thiophene-3-carboxylate (3MT) and 5-(2-ethylhexyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (TPD) as acceptor units to investigate the effects of the terpolymer structure on the optical and electrochemical properties. The performance of an all-polymer solar cell (all-PSC) was comprehensively examined by blending the terpolymer with 2,7-bis(2-hexyldecyl)-4-(selenophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI-Se). The as-cast blend film of Ter-3MTTPD:NDI-Se exhibits the highest power conversion efficiency of 7.66% in the all-PSC. This was further supported by the results of time-resolved photoluminescence (TRPL) in Ter-3MTTPD:NDI-Se blend film states which yielded the highest PL quenching efficiency (90%) resulting from the shortest average lifetime, τave of ∼67 ps, much smaller than those of the two binary copolymer blend films (e.g., τave = 194 ps and 149 ps, respectively, for Co-3MT:NDI-Se and Co-TPD:NDI-Se). In addition, for an as-cast blend film of Ter-3MTTPD:NDI-Se in the active layer, the shelf-life (∼1000 h) of the all-PSC under ambient conditions was found to be much better compared to those of PSCs based on the other two binary copolymers, Co-3MT and Co-TPD.

Original languageEnglish
Pages (from-to)10095-10103
Number of pages9
JournalJournal of Materials Chemistry A
Volume6
Issue number21
DOIs
Publication statusPublished - 2018 Jan 1

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Highly efficient and highly stable terpolymer-based all-polymer solar cells with broad complementary absorption and robust morphology'. Together they form a unique fingerprint.

Cite this