TY - JOUR
T1 - Highly efficient inkjet-printed organic photovoltaic cells
AU - Jung, Jaewook
AU - Kim, Donghwan
AU - Lim, Jongsun
AU - Lee, Changjin
AU - Yoon, Sung Cheol
PY - 2010/5
Y1 - 2010/5
N2 - In this article, we report the development of inkjet printing technique for the fabrication of bulk heterojunction organic photovoltaic cells (OPVs). We have demonstrated highly efficient OPV with a mixture of poly(3-hexylthiophene)s (P3HT) and 1-[3-(methoxycarbonyl)propyl]-1- phenyl[6.6]C61 (PCBM) as an inkjet-printed photoactive layer. Especially, 3.8% of power conversion efficiency (PCE) and 0.68 V of open circuit voltage (Voc) can be obtained by using the chlorobenzene as a solvent. This value is the highest performance in P3HT:PCBM based OPV system by now. We reveal that substantial improvements can be realized by nano-structured heterojunction after inkjet printing and this technique is one of the promising fabrication methods for organic photovoltaic cells. Also, we have designed and fabricated five-series connected large area (18cm2) inkjet-printed OPVs using the patterned indium tin oxide (ITO) with Au bus-electrode to minimize the efficiency drop due to the surface resistance of ITO. Consequently, 1.25% of power conversion efficiency can be obtained with a short circuit current of 1.24 mA/cm 2, a fill factor of 0.32, and an open circuit voltage of 3.2 V.
AB - In this article, we report the development of inkjet printing technique for the fabrication of bulk heterojunction organic photovoltaic cells (OPVs). We have demonstrated highly efficient OPV with a mixture of poly(3-hexylthiophene)s (P3HT) and 1-[3-(methoxycarbonyl)propyl]-1- phenyl[6.6]C61 (PCBM) as an inkjet-printed photoactive layer. Especially, 3.8% of power conversion efficiency (PCE) and 0.68 V of open circuit voltage (Voc) can be obtained by using the chlorobenzene as a solvent. This value is the highest performance in P3HT:PCBM based OPV system by now. We reveal that substantial improvements can be realized by nano-structured heterojunction after inkjet printing and this technique is one of the promising fabrication methods for organic photovoltaic cells. Also, we have designed and fabricated five-series connected large area (18cm2) inkjet-printed OPVs using the patterned indium tin oxide (ITO) with Au bus-electrode to minimize the efficiency drop due to the surface resistance of ITO. Consequently, 1.25% of power conversion efficiency can be obtained with a short circuit current of 1.24 mA/cm 2, a fill factor of 0.32, and an open circuit voltage of 3.2 V.
UR - http://www.scopus.com/inward/record.url?scp=77952980173&partnerID=8YFLogxK
U2 - 10.1143/JJAP.49.05EB03
DO - 10.1143/JJAP.49.05EB03
M3 - Article
AN - SCOPUS:77952980173
SN - 0021-4922
VL - 49
SP - 05EB031-05EB035
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 5 PART 2
ER -