HiTRACE: High-throughput robust analysis for capillary electrophoresis

Sungroh Yoon, Jinkyu Kim, Justine Hum, Hanjoo Kim, Seunghyun Park, Wipapat Kladwang, Rhiju Das

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)

Abstract

Motivation: Capillary electrophoresis (CE) of nucleic acids is a workhorse technology underlying high-throughput genome analysis and large-scale chemical mapping for nucleic acid structural inference. Despite the wide availability of CE-based instruments, there remain challenges in leveraging their full power for quantitative analysis of RNA and DNA structure, thermodynamics and kinetics. In particular, the slow rate and poor automation of available analysis tools have bottlenecked a new generation of studies involving hundreds of CE profiles per experiment. Results: We propose a computational method called high-throughput robust analysis for capillary electrophoresis (HiTRACE) to automate the key tasks in large-scale nucleic acid CE analysis, including the profile alignment that has heretofore been a rate-limiting step in the highest throughput experiments. We illustrate the application of HiTRACE on 13 datasets representing 4 different RNAs, 3 chemical modification strategies and up to 480 single mutant variants; the largest datasets each include 87 360 bands. By applying a series of robust dynamic programming algorithms, HiTRACE outperforms prior tools in terms of alignment and fitting quality, as assessed by measures including the correlation between quantified band intensities between replicate datasets. Furthermore, while the smallest of these datasets required 7-10 h of manual intervention using prior approaches, HiTRACE quantitation of even the largest datasets herein was achieved in 3-12 min. The HiTRACE method, therefore, resolves a critical barrier to the efficient and accurate analysis of nucleic acid structure in experiments involving tens of thousands of electrophoretic bands.

Original languageEnglish
Article numberbtr277
Pages (from-to)1798-1805
Number of pages8
JournalBioinformatics
Volume27
Issue number13
DOIs
Publication statusPublished - 2011 Jul

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'HiTRACE: High-throughput robust analysis for capillary electrophoresis'. Together they form a unique fingerprint.

Cite this