Hybrid brain-computer interface based on EEG and NIRS modalities

Min Ho Lee, Siamac Fazli, Jan Mehnert, Seong Whan Lee

Research output: Contribution to conferencePaper

14 Citations (Scopus)

Abstract

Non-invasive brain-computer interfaces (BCIs) allow users to control external devices by their intentions. Currently, most BCI systems are synchronous, which means, they rely on cues or tasks to which a subject has to react. It would be more useful for users if they could control a device at their own will (i.e., asynchronous BCIs). However, previous asynchronous BCI systems that rely on non-invasive electroencephalogram (EEG) measurements, are not accurate and stable enough for real world applications. Previously, hybrid BCI systems, relying on simultaneous EEG and near-infrared spectroscopy (NIRS) measurements, have been shown to increase the classification performance of synchronous motor imagery (MI) tasks. In this study, we present a first report on an asynchronous multi-modal hybrid BCI, based on simultaneous EEG and near-infrared spectroscopy (NIRS) measurements and propose novel subject-dependent classification strategies for combining both measurements.

Original languageEnglish
DOIs
Publication statusPublished - 2014
Event2014 International Winter Workshop on Brain-Computer Interface, BCI 2014 - Gangwon, Korea, Republic of
Duration: 2014 Feb 172014 Feb 19

Other

Other2014 International Winter Workshop on Brain-Computer Interface, BCI 2014
CountryKorea, Republic of
CityGangwon
Period14/2/1714/2/19

Keywords

  • Asynchronous BCI
  • Combined EEG-NIRS
  • Hybrid Brain-Computer Interface
  • Subject-dependent Classification

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Human Factors and Ergonomics

Fingerprint Dive into the research topics of 'Hybrid brain-computer interface based on EEG and NIRS modalities'. Together they form a unique fingerprint.

  • Cite this

    Lee, M. H., Fazli, S., Mehnert, J., & Lee, S. W. (2014). Hybrid brain-computer interface based on EEG and NIRS modalities. Paper presented at 2014 International Winter Workshop on Brain-Computer Interface, BCI 2014, Gangwon, Korea, Republic of. https://doi.org/10.1109/iww-BCI.2014.6782577