Hybrid Graphene-Gold Nanoparticle-Based Nucleic Acid Conjugates for Cancer-Specific Multimodal Imaging and Combined Therapeutics

Letao Yang, Tae Hyung Kim, Hyeon Yeol Cho, Jeffrey Luo, Jong Min Lee, Sy Tsong Dean Chueng, Yannan Hou, Perry To Tien Yin, Jiyou Han, Jong Hoon Kim, Bong Geun Chung, Jeong Woo Choi, Ki Bum Lee

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

Nanoparticle-based nucleic acid conjugates (NP-NACs) hold great promise for theragnostic applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnoses, NP-NACs suffer from low signal-to-noise ratios, while the efficiency of NP-NACs-mediated cancer therapies has been limited by the adaptation of alternative prosurvival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of having both accurate diagnosis and efficient therapeutics in a single platform. As such, the controlled assembly of hybrid graphene oxide/gold nanoparticle (Au@GO NP)-based cancer-specific NACs (Au@GO NP-NACs) for multimodal imaging and combined therapeutics is reported. The developed Au@GO NP-NACs show excellent surface-enhanced Raman scattering (SERS)-mediated live-cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells are then demonstrated using in vitro microfluidic models. Moreover, with the distinctive advantages of the Au@GO NP-NACs for cancer theragnostics, precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of tumors is shown. Therefore, the Au@GO NP-NACs can pave a new road for advanced disease theragnostics.

Original languageEnglish
Article number2006918
JournalAdvanced Functional Materials
Volume31
Issue number5
DOIs
Publication statusPublished - 2021 Jan 27

Keywords

  • graphene hybrid nanomaterials
  • multimodal cancer theragnostics
  • nanomedicine
  • nanoparticle-based nucleic acid conjugates
  • personalized medicine

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Hybrid Graphene-Gold Nanoparticle-Based Nucleic Acid Conjugates for Cancer-Specific Multimodal Imaging and Combined Therapeutics'. Together they form a unique fingerprint.

Cite this