Hyper-connectivity of functional networks for brain disease diagnosis

Biao Jie, Chong Yaw Wee, Dinggang Shen, Daoqiang Zhang

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help discover disease-related biomarkers important for disease diagnosis.

Original languageEnglish
Pages (from-to)84-100
Number of pages17
JournalMedical Image Analysis
Volume32
DOIs
Publication statusPublished - 2016 Aug 1

Keywords

  • Alzheimer's disease
  • Classification
  • Functional MR imaging
  • Hyper-network

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Vision and Pattern Recognition
  • Radiology Nuclear Medicine and imaging
  • Health Informatics
  • Radiological and Ultrasound Technology

Fingerprint Dive into the research topics of 'Hyper-connectivity of functional networks for brain disease diagnosis'. Together they form a unique fingerprint.

  • Cite this